Søren Knudsen Kær

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211128/publications.pdf

Version: 2024-02-01

166 papers 6,604 citations

50244 46 h-index 76872 **74** g-index

171 all docs

171 docs citations

times ranked

171

4934 citing authors

#	Article	IF	CITATIONS
1	Energy analysis and surrogate modeling for the green methanol production under dynamic operating conditions. Fuel, 2022, 307, 121924.	3.4	22
2	The role of effectiveness factor on the modeling of methanol steam reforming over CuO/ZnO/Al2O3 catalyst in a multi-tubular reactor. International Journal of Hydrogen Energy, 2022, 47, 8700-8715.	3.8	14
3	Electrothermally balanced operation of solid oxide electrolysis cells. Journal of Power Sources, 2022, 523, 231040.	4.0	16
4	A detailed computational fluid dynamics model on biomass pellet smoldering combustion and its parametric study. Chemical Engineering Science, 2021, 231, 116247.	1.9	10
5	Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack. Electrochem, 2021, 2, 50-63.	1.7	1
6	Investigating low and high load cycling tests as accelerated stress tests for proton exchange membrane water electrolysis. Electrochimica Acta, 2021, 370, 137748.	2.6	11
7	Characterization of the Compressive Load on a Lithium-Ion Battery for Electric Vehicle Application. Machines, 2021, 9, 71.	1.2	3
8	Thermal Characterizations of a Lithium Titanate Oxide-Based Lithium-Ion Battery Focused on Random and Periodic Charge-Discharge Pulses. Applied System Innovation, 2021, 4, 24.	2.7	5
9	The effects of cationic impurities on the performance of proton exchange membrane water electrolyzer. Journal of Power Sources, 2020, 473, 228617.	4.0	17
10	Log-Linear Model for Predicting the Lithium-ion Battery Age Based on Resistance Extraction from Dynamic Aging Profiles. IEEE Transactions on Industry Applications, 2020, 56, 6937-6948.	3.3	9
11	Thermal Simulation of Phase Change Material for Cooling of a Lithium-Ion Battery Pack. Electrochem, 2020, 1, 439-449.	1.7	3
12	A Thermodynamic Analysis of an Air-Cooled Proton Exchange Membrane Fuel Cell Operated in Different Climate Regions. Energies, 2020, 13, 2611.	1.6	11
13	A detailed pyrolysis model for a thermally large biomass particle. Fuel, 2020, 278, 118397.	3.4	22
14	Design and Simulation of Internal Flowing Twisted Conduits for Cooling of Lithium-Ion Batteries through Thermal Characterization. Batteries, 2020, 6, 31.	2.1	4
15	A comparative study on three reactor types for methanol synthesis from syngas and CO2. Chemical Engineering Journal, 2020, 393, 124632.	6.6	54
16	A Review of The Methanol Economy: The Fuel Cell Route. Energies, 2020, 13, 596.	1.6	123
17	Modeling and Design of a Multi-Tubular Packed-Bed Reactor for Methanol Steam Reforming over a Cu/ZnO/Al2O3 Catalyst. Energies, 2020, 13, 610.	1.6	24
18	Thermal Analysis of Cold Plate with Different Configurations for Thermal Management of a Lithium-Ion Battery. Batteries, 2020, 6, 17.	2.1	11

#	Article	IF	CITATIONS
19	The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries. Nano Energy, 2019, 65, 104032.	8.2	90
20	An Experimental Analysis of Entropic Coefficient of a Lithium Titanate Oxide Battery. Energies, 2019, 12, 2685.	1.6	10
21	Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel cell as a function of current density and acid doping. Electrochimica Acta, 2019, 317, 521-527.	2.6	12
22	Influence of the operation mode on PEM water electrolysis degradation. International Journal of Hydrogen Energy, 2019, 44, 29889-29898.	3.8	88
23	Effect of Current Rate and Prior Cycling on the Coulombic Efficiency of a Lithium-Ion Battery. Batteries, 2019, 5, 57.	2.1	11
24	Thermodynamic Analyses of a Moderate-Temperature Process of Carbon Dioxide Hydrogenation to Methanol via Reverse Water–Gas Shift with In Situ Water Removal. Industrial & Engineering Chemistry Research, 2019, 58, 10559-10569.	1.8	35
25	Long-term contamination effect of iron ions on cell performance degradation of proton exchange membrane water electrolyser. Journal of Power Sources, 2019, 434, 226755.	4.0	35
26	The effect of Fe3+ contamination in feed water on proton exchange membrane electrolyzer performance. International Journal of Hydrogen Energy, 2019, 44, 12952-12957.	3.8	22
27	Impact of iron and hydrogen peroxide on membrane degradation for polymer electrolyte membrane water electrolysis: Computational and experimental investigation on fluoride emission. Journal of Power Sources, 2019, 420, 54-62.	4.0	48
28	Simulation of Thermal Behaviour of a Lithium Titanate Oxide Battery. Energies, 2019, 12, 679.	1.6	10
29	An Electrical Equivalent Circuit Model of a Lithium Titanate Oxide Battery. Batteries, 2019, 5, 31.	2.1	81
30	Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack. Energies, 2019, 12, 152.	1.6	31
31	Analyzing Discharging and Charging Performance of a Lithium-lon Battery. ECS Transactions, 2019, 95, 37-45.	0.3	1
32	An Analytical Solution for Lithium-Ion Batteries Cooling. ECS Transactions, 2019, 95, 75-79.	0.3	0
33	Thermal Analysis of an Indirect Liquid Cooling with Different Geometries for a Lithium-lon Battery. ECS Transactions, 2019, 95, 105-112.	0.3	2
34	Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochimica Acta, 2019, 293, 476-495.	2.6	79
35	Model-supported characterization of a PEM water electrolysis cell for the effect of compression. Electrochimica Acta, 2018, 263, 228-236.	2.6	54
36	Degradation Behavior of Lithium-Ion Batteries During Calendar Ageingâ€"The Case of the Internal Resistance Increase. IEEE Transactions on Industry Applications, 2018, 54, 517-525.	3.3	88

#	Article	IF	Citations
37	Heat Loss Measurement of Lithium Titanate Oxide Batteries under Fast Charging Conditions by Employing Isothermal Calorimeter. Batteries, 2018, 4, 59.	2.1	17
38	On the Effect of Bipolar Plate Mechanical Properties on the Current Distribution of Proton Exchange Membrane Water Electrolysis. ECS Transactions, 2018, 86, 683-693.	0.3	2
39	Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures. Energies, 2018, 11, 3273.	1.6	56
40	Thermal Modelling of a Lithium Titanate Oxide Battery. ECS Transactions, 2018, 87, 315-326.	0.3	7
41	Investigation of the Effect of State-of-Charge and C-Rates on the Heat Loss and Efficiency of a Lithium-Ion Battery. ECS Transactions, 2018, 87, 51-58.	0.3	7
42	Effect of Bad Connection on Surface Temperature of Lithium-Ion Batteries by Using Infrared Thermography. ECS Transactions, 2018, 87, 39-50.	0.3	4
43	A Review of Different Electric Equivalent Circuit Models and Parameter Identification Methods of Lithium-Ion Batteries. ECS Transactions, 2018, 87, 23-37.	0.3	31
44	Study of Temperature Impacts on a Lithium-Ion Battery Thermal Behaviour by Employing Isothermal Calorimeter. ECS Transactions, 2018, 87, 295-305.	0.3	12
45	From rotating disk electrode to single cell: Exploration of PtNi/C octahedral nanocrystal as practical proton exchange membrane fuel cell cathode catalyst. Journal of Power Sources, 2018, 406, 118-127.	4.0	16
46	Investigating different break-in procedures for reformed methanol high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 14691-14700.	3.8	11
47	Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming. International Journal of Hydrogen Energy, 2018, 43, 11952-11968.	3.8	13
48	The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells. Journal of Power Sources, 2018, 399, 151-156.	4.0	15
49	Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries. Batteries, 2018, 4, 20.	2.1	30
50	Influence of Battery Parametric Uncertainties on the State-of-Charge Estimation of Lithium Titanate Oxide-Based Batteries. Energies, 2018, 11, 795.	1.6	14
51	Experimental and numerical study of flow in expanded metal plate for water electrolysis applications. Journal of Power Sources, 2018, 397, 334-342.	4.0	17
52	Model-Supported Analysis of Degradation Phenomena of a PEM Water Electrolysis Cell under Dynamic Operation. ECS Transactions, 2018, 85, 37-45.	0.3	4
53	On the Effect of Clamping Pressure and Methods on the Current Distribution of a Proton Exchange Membrane Water Electrolyzer. ECS Transactions, 2018, 85, 995-1004.	0.3	4
54	Current and Temperature Distribution Measurement in a Polymer Electrolyte Membrane Water Electrolyzer Cell. ECS Transactions, 2018, 85, 1005-1012.	0.3	3

#	Article	IF	CITATIONS
55	Thermodynamic analysis of steam reforming and oxidative steam reforming of propane and butane for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 13009-13021.	3.8	38
56	Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions. Applied Energy, 2017, 192, 422-436.	5.1	35
57	VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels. International Journal of Hydrogen Energy, 2017, 42, 16333-16344.	3.8	68
58	An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection. International Journal of Hydrogen Energy, 2017, 42, 15851-15860.	3.8	28
59	Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation. Journal of Power Sources, 2017, 359, 37-47.	4.0	44
60	A review of thermal management and safety for lithium ion batteries. , 2017, , .		6
61	New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2017, 42, 27230-27240.	3.8	14
62	Lithium-ion battery dynamic model for wide range of operating conditions. , 2017, , .		23
63	In-situ experimental characterization of the clamping pressure effects on low temperature polymer electrolyte membrane electrolysis. International Journal of Hydrogen Energy, 2017, 42, 21597-21606.	3.8	25
64	Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor. International Journal of Hydrogen Energy, 2017, 42, 21901-21912.	3.8	24
65	On the Experimental Investigation of the Clamping Pressure Effects on the Proton Exchange Membrane Water Electrolyser Cell Performance. ECS Transactions, 2017, 77, 1409-1421.	0.3	2
66	The discharge behavior of lithium-ion batteries using the Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model., 2017,,.		8
67	Electrothermal impedance spectroscopy as a cost efficient method for determining thermal parameters of lithium ion batteries: Prospects, measurement methods and the state of knowledge. Journal of Cleaner Production, 2017, 155, 63-71.	4.6	25
68	Evolution of Surface Temperature of a 13 Amp Hour Nano Lithium-Titanate Battery Cell under Fast Charging. ECS Transactions, 2017, 81, 271-279.	0.3	2
69	Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels Using a Micro-Porous Ceramic as Gas Permeable Wall. ECS Transactions, 2017, 80, 1107-1115.	0.3	8
70	Cooling Simulation and Thermal Abuse Modeling of Lithium-Ion Batteries Using the Newman, Tiedemann, Gu, and Kim (NTGK) Model. ECS Transactions, 2017, 81, 261-270.	0.3	11
71	Towards an Ultimate Battery Thermal Management System: A Review. Batteries, 2017, 3, 9.	2.1	79
72	Generalized Characterization Methodology for Performance Modelling of Lithium-Ion Batteries. Batteries, 2016, 2, 37.	2.1	71

#	Article	IF	Citations
73	Determination of the behavior and performance of commercial Li-Ion pouch cells by means of isothermal calorimeter. , $2016, , .$		8
74	Multiphysics based thermal modeling of a pouch lithium-ion battery cell for the development of pack level thermal management system. , 2016, , .		5
75	A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2016, 41, 21310-21344.	3.8	320
76	Modeling and experimental validation of water mass balance in a PEM fuel cell stack. International Journal of Hydrogen Energy, 2016, 41, 3079-3092.	3.8	64
77	A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. International Journal of Hydrogen Energy, 2016, 41, 52-68.	3.8	82
78	High Temperature PEM Fuel Cell Systems, Control and Diagnostics. , 2016, , 459-486.		1
79	Estimating Important Electrode Parameters of High Temperature PEM Fuel Cells by Fitting a Model to Polarisation Curves and Impedance Spectra. ECS Transactions, 2015, 68, 13-34.	0.3	10
80	The AC Impedance Characteristic of High Power Li4Ti5O12-Based Battery Cells. ECS Transactions, 2015, 70, 291-300.	0.3	1
81	Investigation of Multidimensional Electrothermal Impedance Spectroscopy Measurement on Lithium Ion Battery Cell. ECS Transactions, 2015, 70, 305-310.	0.3	3
82	Electrothermal impedance spectroscopy measurement on high power LiMO <inf>2</inf> /Li <inf>4</inf> Ti <inf>5</inf> O <inf>12</inf> battery cell with low bandwidth test setup. , 2015, , .		0
83	Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Fuel Cell Science and Technology, 2015, 12, .	0.8	21
84	Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition. International Journal of Hydrogen Energy, 2015, 40, 2833-2839.	3.8	71
85	Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation. International Journal of Hydrogen Energy, 2015, 40, 6672-6680.	3 . 8	32
86	Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications. Applied Energy, 2015, 147, 569-581.	5.1	49
87	Lifetime Estimation of the Nanophosphate \$hbox{LiFePO}_{4}hbox{/C}\$ Battery Chemistry Used in Fully Electric Vehicles. IEEE Transactions on Industry Applications, 2015, 51, 3453-3461.	3.3	81
88	On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents. Journal of Power Sources, 2015, 286, 475-487.	4.0	114
89	Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: Influence of anode humidification and carbon dioxide. International Journal of Hydrogen Energy, 2015, 40, 14932-14941.	3.8	45
90	System model development for a methanol reformed 5ÂkW high temperature PEM fuel cell system. International Journal of Hydrogen Energy, 2015, 40, 13080-13089.	3.8	25

#	Article	lF	Citations
91	The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell. ECS Transactions, 2015, 68, 99-116.	0.3	4
92	Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures. Journal of Fuel Cell Science and Technology, 2014, 11, .	0.8	6
93	Parametric Sensitivity Tests â€" European PEM Fuel Cell Stack Test Procedures. , 2014, , .		1
94	Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells. , 2014 , , .		1
95	Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement: First impedance measurement circuit., 2014,,.		1
96	Optimization of a thermoelectric generator subsystem for high temperature PEM fuel cell exhaust heat recovery. International Journal of Hydrogen Energy, 2014, 39, 6637-6645.	3.8	36
97	Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate. International Journal of Hydrogen Energy, 2014, 39, 18343-18350.	3.8	42
98	Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system. Energy Conversion and Management, 2014, 87, 820-831.	4.4	206
99	Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat and power system. Sustainable Energy Technologies and Assessments, 2014, 8, 99-108.	1.7	18
100	Comparative study of the break in process of post doped and sol–gel high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 14959-14968.	3.8	24
101	Test of hybrid power system for electrical vehicles using a lithium-ion battery pack and a reformed methanol fuel cell range extender. International Journal of Hydrogen Energy, 2014, 39, 1856-1863.	3.8	34
102	Thermal modeling and temperature control of a PEM fuel cell system for forklift applications. International Journal of Hydrogen Energy, 2014, 39, 8410-8420.	3.8	120
103	Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach. Journal of Electronic Materials, 2013, 42, 2035-2042.	1.0	15
104	Optimization of a High Temperature PEMFC micro HP System by Formulation and Application of a Process Integration Methodology. Fuel Cells, 2013, 13, 238-248.	1.5	12
105	Control and experimental characterization of a methanol reformer for a 350ÂW high temperature polymer electrolyte membrane fuel cell system. International Journal of Hydrogen Energy, 2013, 38, 1676-1684.	3.8	49
106	Ejector design and performance evaluation for recirculation of anode gas in a micro combined heat and power systems based on solid oxide fuel cell. Applied Thermal Engineering, 2013, 54, 26-34.	3.0	41
107	Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households. Applied Thermal Engineering, 2013, 50, 704-713.	3.0	30
108	Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by complex impedance measurement: Constant temperature stack characterization. International Journal of Hydrogen Energy, 2013, 38, 4054-4066.	3.8	9

#	Article	IF	Citations
109	Comprehensive Study of Ignition and Combustion of Single Wooden Particles. Energy &	2.5	28
110	Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles. Energy & Samp; Fuels, 2013, 27, 507-514.	2.5	69
111	Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement: First results on variable temperature stack characterization. , 2013, , .		3
112	The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a Proton Exchange Membrane Fuel Cell. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	11
113	Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	2
114	A Transient Fuel Cell Model to Simulate HTPEM Fuel Cell Impedance Spectra. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	25
115	Experimental Validation of Methanol Crossover in a Three-Dimensional, Two-Fluid Model of a Direct Methanol Fuel Cell. , 2012, , .		0
116	Experimental and Numerical Evaluation of the Bypass Flow in a Catalytic Plate Reactor for Hydrogen Production. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	3
117	Large-eddy simulations of the non-reactive flow in the Sydney swirl burner. International Journal of Heat and Fluid Flow, 2012, 36, 47-57.	1.1	25
118	Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell. Energies, 2012, 5, 4251-4267.	1.6	40
119	Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell. International Journal of Hydrogen Energy, 2012, 37, 18231-18242.	3.8	41
120	Comparison of Reynolds averaged Navier-Stokes based simulation and large-eddy simulation for one isothermal swirling flow. Journal of Thermal Science, 2012, 21, 154-161.	0.9	16
121	Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies. Journal of Electronic Materials, 2012, 41, 1838-1844.	1.0	23
122	Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions. Fuel Processing Technology, 2012, 98, 65-73.	3.7	21
123	Modeling and optimization of a 1ÂkWe HT-PEMFC-based micro-CHP residential system. International Journal of Hydrogen Energy, 2012, 37, 2470-2481.	3.8	58
124	Low stoichiometry operation of a proton exchange membrane fuel cell employing the interdigitated flow field – A modeling study. International Journal of Hydrogen Energy, 2012, 37, 8477-8489.	3.8	12
125	Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery. International Journal of Hydrogen Energy, 2012, 37, 8490-8498.	3.8	65
126	Numerical simulation of effect of catalyst wire-mesh pressure drop characteristics on flow distribution in catalytic parallel plate steam reformer. International Journal of Hydrogen Energy, 2012, 37, 9485-9495.	3.8	1

#	Article	IF	CITATIONS
127	Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement: First results on cell characterization. , 2011, , .		1
128	High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 2011, 36, 9815-9830.	3.8	131
129	Analysis of the impact of heat-to-power ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe. International Journal of Hydrogen Energy, 2011, 36, 13715-13726.	3.8	46
130	Modeling and off-design performance of a 1kWe HT-PEMFC (high temperature-proton exchange) Tj ETQq0 0 0 rg single-family households. Energy, 2011, 36, 993-1002.	BT /Overlo 4.5	ock 10 Tf 50 82
131	Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and power (CHP) system. Energy, 2011, 36, 4216-4226.	4.5	153
132	Chemistry and radiation in oxy-fuel combustion: A computational fluid dynamics modeling study. Fuel, 2011, 90, 2519-2529.	3.4	106
133	Boundary model-based reference control of blower cooled high temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 5030-5037.	3.8	7
134	Modeling and parametric study of a 1kWe HT-PEMFC-based residential micro-CHP system. International Journal of Hydrogen Energy, 2011, 36, 5010-5020.	3.8	72
135	Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model. Journal of Power Sources, 2011, 196, 6305-6317.	4.0	32
136	Low Stoichiometry Operation of a Polymer Electrolyte Membrane Fuel Cell Employing the Interdigitated Flow Field Design. ECS Transactions, 2011, 41, 1897-1908.	0.3	3
137	System Modeling and Validation of a Thermoelectric Fluidic Power Source: Proton Exchange Membrane Fuel Cell and Thermoelectric Generator (PEMFC-TEG). Journal of Electronic Materials, 2010, 39, 1593-1600.	1.0	47
138	A study of multi-phase flow through the cathode side of an interdigitated flow field using a multi-fluid model. Journal of Power Sources, 2010, 195, 4842-4852.	4.0	38
139	Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell. Journal of Power Sources, 2010, 195, 4835-4841.	4.0	27
140	Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell. International Journal of Hydrogen Energy, 2010, 35, 9943-9953.	3.8	29
141	Co-firing straw with coal in a swirl-stabilized dual-feed burner: Modelling and experimental validation. Bioresource Technology, 2010, 101, 4169-4178.	4.8	78
142	Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model. ECS Transactions, 2010, 33, 1503-1513.	0.3	6
143	Particle Image Velocimetry and Computational Fluid Dynamics Analysis of Fuel Cell Manifold. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	20
144	Flow and Pressure Distribution in Fuel Cell Manifolds. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	22

#	Article	IF	CITATIONS
145	New Weighted Sum of Gray Gases Model Applicable to Computational Fluid Dynamics (CFD) Modeling of Oxyâ'Fuel Combustion: Derivation, Validation, and Implementation. Energy & E	2.5	202
146	A Computational Analysis of Multiphase Flow Through PEMFC Cathode Porous Media Using the Multifluid Approach. Journal of the Electrochemical Society, 2009, 156, B1301.	1.3	30
147	Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature. Journal of Fuel Cell Science and Technology, 2009, 6, .	0.8	28
148	Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy. Fuel Cells, 2009, 9, 463-473.	1.5	72
149	Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell. Journal of Power Sources, 2009, 191, 289-296.	4.0	92
150	Operation Strategy for Solid Oxide Fuel Cell Systems for Small-Scale Stationary Applications. International Journal of Green Energy, 2009, 6, 583-593.	2.1	9
151	Part two: Control of a novel HTPEM-based micro combined heat and power fuel cell system. International Journal of Hydrogen Energy, 2008, 33, 1921-1931.	3.8	48
152	Grate-firing of biomass for heat and power production. Progress in Energy and Combustion Science, 2008, 34, 725-754.	15.8	402
153	Part one: A novel model of HTPEM-based micro-combined heat and power fuel cell system. International Journal of Hydrogen Energy, 2008, 33, 1909-1920.	3 . 8	72
154	Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks. International Journal of Hydrogen Energy, 2008, 33, 4655-4664.	3.8	83
155	Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle. International Journal of Hydrogen Energy, 2008, 33, 7137-7145.	3.8	62
156	Mathematical Modeling and Experimental Study of Biomass Combustion in a Thermal 108 MW Grate-Fired Boiler. Energy & Energy & 2008, 22, 1380-1390.	2.5	130
157	Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack. ECS Transactions, 2008, 12, 571-578.	0.3	3
158	400 W High Temperature PEM Fuel Cell Stack Test. ECS Transactions, 2007, 5, 197-207.	0.3	18
159	Physical characterization of biomass fuels prepared for suspension firing in utility boilers for CFD modelling. Biomass and Bioenergy, 2007, 31, 318-325.	2.9	29
160	Modeling and Experiments of Biomass Combustion in a Large-scale Grate Boiler., 2007,, 1173-1179.		1
161	Towards a CFD-based mechanistic deposit formation model for straw-fired boilers. Fuel, 2006, 85, 833-848.	3.4	68
162	Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance. Journal of Power Sources, 2006, 162, 239-245.	4.0	128

#	ARTICLE	IF	CITATIONS
163	Straw combustion on slow-moving grates?a comparison of model predictions with experimental data. Biomass and Bioenergy, 2005, 28, 307-320.	2.9	49
164	Numerical modelling of a straw-fired grate boiler. Fuel, 2004, 83, 1183-1190.	3.4	103
165	Use of numerical modeling in design for co-firing biomass in wall-fired burners. Chemical Engineering Science, 2004, 59, 3281-3292.	1.9	92
166	Modelling the motion of cylindrical particles in a nonuniform flow. Chemical Engineering Science, 2003, 58, 3489-3498.	1.9	126