
Finn K Vogensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8211113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and characterization of bacteriophages active against methicillin-resistant Staphylococcus pseudintermedius. Research in Veterinary Science, 2019, 122, 81-85.	0.9	24
2	Gut microbiota recovery and immune response in ampicillin-treated mice. Research in Veterinary Science, 2018, 118, 357-364.	0.9	10
3	Investigation of the bacteriophage community in induced lysates of undefined mesophilic mixed-strain DL-cultures using classical and metagenomic approaches. International Journal of Food Microbiology, 2018, 272, 61-72.	2.1	2
4	Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. Journal of Microbiological Methods, 2018, 144, 1-7.	0.7	81
5	Cell Wall Glycans Mediate Recognition of the Dairy Bacterium Streptococcus thermophilus by Bacteriophages. Applied and Environmental Microbiology, 2018, 84, .	1.4	30
6	Extraction and Purification of Viruses from Fecal Samples for Metagenome and Morphology Analyses. Methods in Molecular Biology, 2018, 1838, 49-57.	0.4	4
7	Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species. Applied and Environmental Microbiology, 2017, 83, .	1.4	30
8	Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures. Applied and Environmental Microbiology, 2017, 83, .	1.4	23
9	Genomic Characterization of Dairy Associated Leuconostoc Species and Diversity of Leuconostocs in Undefined Mixed Mesophilic Starter Cultures. Frontiers in Microbiology, 2017, 8, 132.	1.5	43
10	A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages. PLoS ONE, 2017, 12, e0174223.	1.1	26
11	Clear Plaque Mutants of Lactococcal Phage TP901-1. PLoS ONE, 2016, 11, e0155233.	1.1	2
12	Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2016, 161, 1095-1099.	0.9	83
13	Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome, 2015, 3, 64.	4.9	117
14	Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture. Journal of Dairy Science, 2015, 98, 1640-1651.	1.4	21
15	Phytase-active lactic acid bacteria from sourdoughs: Isolation and identification. LWT - Food Science and Technology, 2015, 63, 766-772.	2.5	44
16	Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling. Journal of Dairy Science, 2015, 98, 68-77.	1.4	15
17	Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. International Journal of Food Microbiology, 2015, 194, 46-53.	2.1	65
18	Influence of proteolytic Lactococcus lactis subsp. cremoris on ripening of reduced-fat Cheddar cheese made with camel chymosin. International Dairy Journal, 2015, 41, 38-45.	1.5	8

#	Article	IF	CITATIONS
19	Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Frontiers in Microbiology, 2014, 5, 186.	1.5	59
20	Complete Genome Sequences of Four Novel Lactococcus lactis Phages Distantly Related to the Rare 1706 Phage Species. Genome Announcements, 2014, 2, .	0.8	7
21	Genome Sequences of Two Leuconostoc pseudomesenteroides Strains Isolated from Danish Dairy Starter Cultures. Genome Announcements, 2014, 2, .	0.8	5
22	DPS – A rapid method for genome sequencing of DNA-containing bacteriophages directly from a single plaque. Journal of Virological Methods, 2014, 196, 152-156.	1.0	48
23	Sequence and comparative analysis of Leuconostoc dairy bacteriophages. International Journal of Food Microbiology, 2014, 176, 29-37.	2.1	20
24	Characterization of the gut microbiota in leptin deficient obese mice – Correlation to inflammatory and diabetic parameters. Research in Veterinary Science, 2014, 96, 241-250.	0.9	75
25	Genome Sequence of Leuconostoc mesenteroides subsp. cremoris Strain T26, Isolated from Mesophilic Undefined Cheese Starter. Genome Announcements, 2014, 2, .	0.8	6
26	Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Scientific Reports, 2014, 4, 5922.	1.6	129
27	Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3720-3726.	0.8	28
28	Potential impact on cheese flavour of heterofermentative bacteria from starter cultures. International Dairy Journal, 2013, 33, 112-119.	1.5	30
29	Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clinical Nutrition, 2013, 32, 935-940.	2.3	91
30	Growth of adjunct Lactobacillus casei in Cheddar cheese differing in milk fat globule membrane components. International Dairy Journal, 2013, 31, 70-82.	1.5	26
31	2-Heptyl-Formononetin Increases Cholesterol and Induces Hepatic Steatosis in Mice. BioMed Research International, 2013, 2013, 1-13.	0.9	10
32	Classification of Lytic Bacteriophages Attacking Dairy Leuconostoc Starter Strains. Applied and Environmental Microbiology, 2013, 79, 3628-3636.	1.4	30
33	Identification of the Receptor-Binding Protein in Lytic Leuconostoc pseudomesenteroides Bacteriophages. Applied and Environmental Microbiology, 2013, 79, 3311-3314.	1.4	21
34	The Lactococcal Phages Tuc2009 and TP901-1 Incorporate Two Alternate Forms of Their Tail Fiber into Their Virions for Infection Specialization*. Journal of Biological Chemistry, 2013, 288, 5581-5590.	1.6	79
35	Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny. Applied and Environmental Microbiology, 2013, 79, 4385-4392.	1.4	99
36	Faecal and caecal microbiota profiles of mice do not cluster in the same way. Laboratory Animals, 2012, 46, 231-236.	0.5	35

#	Article	IF	CITATIONS
37	Selective inbreeding does not increase gut microbiota similarity in BALB/c mice. Laboratory Animals, 2012, 46, 335-337.	O.5	8
38	Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerance without affecting weight development and gut mucosal immunity. Research in Veterinary Science, 2012, 92, 501-508.	0.9	46
39	PCR amplification of repetitive sequences as a possible approach in relative species quantification. Meat Science, 2012, 90, 438-443.	2.7	18
40	Impact of selected coagulants and starters on primary proteolysis and amino acid release related to bitterness and structure of reduced-fat Cheddar cheese. Dairy Science and Technology, 2012, 92, 593-612.	2.2	26
41	Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia, 2012, 55, 2285-2294.	2.9	441
42	The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. International Journal of Food Microbiology, 2012, 153, 192-202.	2.1	117
43	Lactobacilli and bifidobacteria induce differential interferon-β profiles in dendritic cells. Cytokine, 2011, 56, 520-530.	1.4	71
44	Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. International Dairy Journal, 2011, 21, 142-148.	1.5	130
45	Heat tolerance of dairy lactococcal c2 phages. International Dairy Journal, 2011, 21, 556-560.	1.5	11
46	Influence of microflora on texture and contents of amino acids, organic acids, and volatiles in semi-hard cheese made with DL-starter and propionibacteria. Journal of Dairy Science, 2011, 94, 1098-1111.	1.4	17
47	Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. Journal of Dairy Science, 2011, 94, 4313-4328.	1.4	88
48	Genetics of Lactic Acid Bacteria. , 2011, , 17-37.		1
49	Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07. FEMS Microbiology Ecology, 2011, 75, 482-496.	1.3	64
50	The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes. International Journal of Food Microbiology, 2011, 149, 269-273.	2.1	36
51	Alcohol Facilitates CD1d Loading, Subsequent Activation of NKT Cells, and Reduces the Incidence of Diabetes in NOD Mice. PLoS ONE, 2011, 6, e17931.	1.1	15
52	Potential of anticlostridial <i>Lactobacillus</i> isolated from cheese to prevent blowing defects in semihard cheese. International Journal of Dairy Technology, 2010, 63, 544-551.	1.3	5
53	Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE, 2010, 5, e9085.	1.1	2,309
54	Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Laboratory Animals, 2010, 44, 283-289	0.5	42

4

#	Article	IF	CITATIONS
55	Gene Transcription and Virulence Potential of <i>Listeria monocytogenes</i> Strains After Exposure to Acidic and NaCl Stress. Foodborne Pathogens and Disease, 2009, 6, 669-680.	0.8	82
56	A comparative study on adhesion and recovery of potential probiotic strains of <i>Lactobacillus</i> spp. by <i>in vitro</i> assay and analysis of human colon biopsies. Microbial Ecology in Health and Disease, 2009, 21, 95-99.	3.8	9
57	Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiota. International Journal of Food Microbiology, 2009, 130, 251-257.	2.1	24
58	Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related <i>Lactobacillus helveticus</i> strains. Letters in Applied Microbiology, 2009, 49, 396-402.	1.0	21
59	Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains. International Dairy Journal, 2009, 19, 661-668.	1.5	52
60	Species determination – Can we detect and quantify meat adulteration?. Meat Science, 2009, 83, 165-174.	2.7	257
61	α-Chitinase activity among lactic acid bacteria. Systematic and Applied Microbiology, 2008, 31, 151-156.	1.2	33
62	Morphology, Genome Sequence, and Structural Proteome of Type Phage P335 from <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2008, 74, 4636-4644.	1.4	52
63	Temperate phages TP901-1 and ÕLC3, belonging to the P335 species, apparently use different pathways for DNA injection in <i>Lactococcus lactis</i> subsp. <i>cremoris</i> 3107. FEMS Microbiology Letters, 2007, 276, 156-164.	0.7	25
64	Comparison of methods and animal models commonly used for investigation of fecal microbiota: Effects of time, host and gender. Journal of Microbiological Methods, 2006, 66, 87-95.	0.7	39
65	Heat resistance of Lactobacillus paracasei isolated from semi-hard cheese made of pasteurised milk. International Dairy Journal, 2006, 16, 1196-1204.	1.5	39
66	Lactobacillus plantarum inhibits growth of Listeria monocytogenes in an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. International Journal of Food Microbiology, 2006, 108, 10-14.	2.1	23
67	Identification of the Lower Baseplate Protein as the Antireceptor of the Temperate Lactococcal Bacteriophages TP901-1 and Tuc2009. Journal of Bacteriology, 2006, 188, 55-63.	1.0	61
68	Analysis of the Collar-Whisker Structure of Temperate Lactococcal Bacteriophage TP901-1. Applied and Environmental Microbiology, 2006, 72, 6815-6818.	1.4	13
69	Effects of Lactococcus lactis on Composition of Intestinal Microbiota: Role of Nisin. Applied and Environmental Microbiology, 2006, 72, 239-244.	1.4	95
70	Anatomy of a Lactococcal Phage Tail. Journal of Bacteriology, 2006, 188, 3972-3982.	1.0	72
71	Structural Characterization and Assembly of the Distal Tail Structure of the Temperate Lactococcal Bacteriophage TP901-1. Journal of Bacteriology, 2005, 187, 4187-4197.	1.0	57

Genetics of Lactic Acid Bacteria. , 2004, , .

#	Article	IF	CITATIONS
73	Identification of proteins induced at low pH in Lactococcus lactis. International Journal of Food Microbiology, 2003, 87, 293-300.	2.1	83
74	Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Molecular Microbiology, 2003, 50, 609-621.	1.2	48
75	Physiological properties of Lactobacillus paracasei, L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese. Food Research International, 2003, 36, 1037-1046.	2.9	34
76	ClpE from Lactococcus lactis Promotes Repression of CtsR-Dependent Gene Expression. Journal of Bacteriology, 2003, 185, 5117-5124.	1.0	22
77	Analysis of the Complete DNA Sequence of the Temperate Bacteriophage TP901-1: Evolution, Structure, and Genome Organization of Lactococcal Bacteriophages. Virology, 2001, 283, 93-109.	1.1	77
78	Identification of a Replication Protein and Repeats Essential for DNA Replication of the Temperate Lactococcal Bacteriophage TP901-1. Applied and Environmental Microbiology, 2001, 67, 774-781.	1.4	22
79	Mutational Analysis of Two Structural Genes of the Temperate Lactococcal Bacteriophage TP901-1 Involved in Tail Length Determination and Baseplate Assembly. Virology, 2000, 276, 315-328.	1.1	78
80	Sequence variation of the 16S to 23S rRNA spacer region in Salmonella enterica. Research in Microbiology, 2000, 151, 37-42.	1.0	12
81	ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression The GenBank accession numbers for the nucleotide sequences of ctsR and ORF555 and their flanking regions are AJ249133 and AJ249134, respectively Microbiology (United Kingdom), 2000, 146, 1447-1455.	0.7	49
82	Disruption and Analysis of the clpB , clpC , and clpE Genes in Lactococcus lactis : ClpE, a New Clp Family in Gram-Positive Bacteria. Journal of Bacteriology, 1999, 181, 2075-2083.	1.0	51
83	Induced Levels of Heat Shock Proteins in a <i>dnaK</i> Mutant of <i>Lactococcus lactis</i> . Journal of Bacteriology, 1998, 180, 3873-3881.	1.0	48
84	Replication Regions of Two Pairs of Incompatible Lactococcal Theta-Replicating Plasmids. Plasmid, 1997, 38, 115-127.	0.4	26
85	A Genomic Region of Lactococcal Temperate Bacteriophage TP901-1 Encoding Major Virion Proteins. Virology, 1996, 218, 306-315.	1.1	28
86	Characterization of the Replicon from the Lactococcal Theta-Replicating Plasmid pJW563. Plasmid, 1995, 34, 105-118.	0.4	42
87	Virion Positions and Relationships of Lactococcal Temperate Bacteriophage TP901-1 Proteins. Virology, 1995, 212, 595-606.	1.1	33
88	Restriction-modification systems in lactococcus lactis. Gene, 1995, 157, 13-18.	1.0	42
89	LlaAI and LlaBI, two type-II restriction endonucleases from Lactococcus lactis subsp. cremoris W9 and W56 recognizing, respectively, 5'-/GATC-3' and 5'-C/TRYAG-3'. Gene, 1993, 136, 371-372.	1.0	33
90	Identification of three different plasmid-encoded restriction/modification systems in Streptococcus lactis subsp. cremoris W56. FEMS Microbiology Letters, 1989, 59, 161-166.	0.7	52