
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8210722/publications.pdf Version: 2024-02-01

MADIA VAMUAKAKI

#	Article	IF	CITATIONS
1	Shear driven vorticity aligned flocs in a suspension of attractive rigid rods. Soft Matter, 2021, 17, 1232-1245.	1.2	13
2	Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics, 2021, 10, 1211-1242.	2.9	71
3	Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties. ACS Applied Materials & amp; Interfaces, 2021, 13, 17183-17195.	4.0	30
4	rGO Functionalized ZnO–TiO2 Core-Shell Flower-Like Architectures for Visible Light Photocatalysis. Catalysts, 2021, 11, 332.	1.6	10
5	Poly(2â€ethylâ€2â€oxazoline) grafted gellan gum for potential application in transmucosal drug delivery. Polymers for Advanced Technologies, 2021, 32, 2770-2780.	1.6	10
6	Versatile nanografting pathway to functionally embellished fluorogenic small-molecule on two-dimensional inorganic surfaces. Surfaces and Interfaces, 2021, 23, 100949.	1.5	0
7	Responsive Polyesters with Alkene and Carboxylic Acid Side-Groups for Tissue Engineering Applications. Polymers, 2021, 13, 1636.	2.0	7
8	Photo- and Acid-Degradable Polyacylhydrazone–Doxorubicin Conjugates. Polymers, 2021, 13, 2461.	2.0	9
9	Responsive Quaternized PDMAEMA Copolymers with Antimicrobial Action. Polymers, 2021, 13, 3051.	2.0	21
10	Polysaccharides and Applications in Regenerative Medicine. , 2021, , 1-33.		0
11	Hollow polymer microrods of tunable flexibility from dense amphiphilic block copolymer brushes. Soft Matter, 2020, 16, 833-841.	1.2	4
12	Effect of Graphene Nanoplatelets on the Structure, the Morphology, and the Dielectric Behavior of Low-Density Polyethylene Nanocomposites. Materials, 2020, 13, 4776.	1.3	13
13	Film Properties and Antimicrobial Efficacy of Quaternized PDMAEMA Brushes: Short vs Long Alkyl Chain Length. Langmuir, 2020, 36, 3482-3493.	1.6	48
14	Reversible chemocapacitor system based on PDMAEMA polymers for fast sensing of VOCs mixtures. Microelectronic Engineering, 2020, 227, 111304.	1.1	4
15	Biodegradable Chitosan-graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers, 2020, 12, 316.	2.0	21
16	Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites. Journal of Materials Engineering and Performance, 2020, 29, 1909-1918.	1.2	63
17	Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity. Polymer Chemistry, 2020, 11, 4078-4083.	1.9	17
18	Quantum dot based 3D printed woodpile photonic crystals tuned for the visible. Nanoscale Advances, 2019, 1, 3413-3423.	2.2	12

#	Article	IF	CITATIONS
19	Multiphoton 3D Printing of Biopolymer-Based Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 6161-6170.	2.6	39
20	Synthesis, Nanomechanical Characterization and Biocompatibility of a Chitosan-Graft-Poly(ε-caprolactone) Copolymer for Soft Tissue Regeneration. Materials, 2019, 12, 150.	1.3	14
21	Initiatorâ€Free, Multiphoton Polymerization of Gelatin Methacrylamide. Macromolecular Materials and Engineering, 2018, 303, 1800458.	1.7	23
22	Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. Journal of Materials Science: Materials in Medicine, 2018, 29, 98.	1.7	10
23	Osteogenic Potential of Pre-Osteoblastic Cells on a Chitosan-graft-Polycaprolactone Copolymer. Materials, 2018, 11, 490.	1.3	23
24	Complex ZnO-TiO ₂ Core–Shell Flower-Like Architectures with Enhanced Photocatalytic Performance and Superhydrophilicity without UV Irradiation. Langmuir, 2018, 34, 9122-9132.	1.6	22
25	Triple-Responsive Block Copolymer Micelles with Synergistic pH and Temperature Response. Macromolecules, 2018, 51, 6848-6858.	2.2	35
26	Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking. , 2018, , .		1
27	A facile route towards PDMAEMA homopolymer amphiphiles. Soft Matter, 2017, 13, 3777-3782.	1.2	38
28	Quantum dot based 3D photonic devices. , 2017, , .		0
29			
	Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113.	3.1	11
30		3.1 1.8	11 9
	photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113.		
30	photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113. pH-responsive polyampholytic hybrid Janus nanoparticles. Polymer, 2017, 130, 50-60. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D	1.8	9
30 31	photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113. pH-responsive polyampholytic hybrid Janus nanoparticles. Polymer, 2017, 130, 50-60. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids and Surfaces B: Biointerfaces, 2017, 149, 233-242. Immunomodulatory Potential of Chitosan- <i>graft</i> poly(ε-caprolactone) Copolymers toward the Polarization of Bone-Marrow-Derived Macrophages. ACS Biomaterials Science and Engineering, 2017, 3,	1.8 2.5	9 32
30 31 32	photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113. pH-responsive polyampholytic hybrid Janus nanoparticles. Polymer, 2017, 130, 50-60. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids and Surfaces B: Biointerfaces, 2017, 149, 233-242. Immunomodulatory Potential of Chitosan- <i>graft</i> -poly(Îμ-caprolactone) Copolymers toward the Polarization of Bone-Marrow-Derived Macrophages. ACS Biomaterials Science and Engineering, 2017, 3, 1341-1349. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polymer	1.8 2.5 2.6	9 32 22
30 31 32 33	 photocatalytic performance of TiO 2. Applied Surface Science, 2017, 399, 106-113. pH-responsive polyampholytic hybrid Janus nanoparticles. Polymer, 2017, 130, 50-60. Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids and Surfaces B: Biointerfaces, 2017, 149, 233-242. Immunomodulatory Potential of Chitosan-<i>graft</i>poly(l̂µ-caprolactone) Copolymers toward the Polarization of Bone-Marrow-Derived Macrophages. ACS Biomaterials Science and Engineering, 2017, 3, 1341-1349. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polymer Chemistry, 2017, 8, 74-96. Biodegradation of weathered polystyrene films in seawater microcosms. Scientific Reports, 2017, 7, 	1.8 2.5 2.6 1.9	9 32 22 244

#	Article	IF	CITATIONS
37	Exploring the potential of Multiphoton Laser Ablation Lithography (MP-LAL) as a reliable technique for sub-50nm patterning. Proceedings of SPIE, 2016, , .	0.8	1
38	Three-Dimensional Infrared Metamaterial with Asymmetric Transmission. ACS Photonics, 2015, 2, 287-294.	3.2	122
39	Direct fs Laser Writing of 3D Nanostructures. Nano-optics and Nanophotonics, 2015, , 137-154.	0.2	Ο
40	Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Applied Surface Science, 2015, 353, 865-872.	3.1	108
41	Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic–inorganic composite scaffolds for bone repair. Materials Science and Engineering C, 2015, 48, 301-309.	3.8	45
42	Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo–chemotherapy. Nature Communications, 2014, 5, 3623.	5.8	120
43	Wharton's Jelly Mesenchymal Stem Cell Response on Chitosan-graft-poly (ε-caprolactone) Copolymer for Myocardium Tissue Engineering. Current Pharmaceutical Design, 2014, 20, 2030-2039.	0.9	13
44	Redox Multiphoton Polymerization for 3D Nanofabrication. Nano Letters, 2013, 13, 3831-3835.	4.5	46
45	Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward â€~scaffold on scaffold' hard tissue engineering. Biofabrication, 2013, 5, 045002.	3.7	44
46	Metallic Nanocatalysts Embedded within p <scp>H</scp> â€Responsive Polymeric Microgels and Deposition onto Solid Substrates. Macromolecular Symposia, 2013, 331-332, 17-25.	0.4	1
47	Nanomechanical properties of hybrid coatings for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 25, 48-62.	1.5	33
48	Preâ€osteoblastic cell response on threeâ€dimensional, organicâ€inorganic hybrid material scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2283-2294.	2.1	56
49	Membranes for Organic Solvent Nanofiltration Based on Preassembled Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 1109-1121.	1.8	44
50	Photoâ€ <scp>C</scp> ontrolled Synthesis of Responsive Polymer Capsules from Hybrid Coreâ€ <scp>S</scp> hell Nanoparticles. Macromolecular Symposia, 2013, 331-332, 129-136.	0.4	1
51	Fabry-Perot vapor microsensor onto fibre endface fabricated by multiphoton polymerization technique. , 2013, , .		Ο
52	Fabry-Perot Vapor Microsensors Fabricated onto Fibre Endface by Multiphoton Polymerization Technique. MATEC Web of Conferences, 2013, 8, 05006.	0.1	0
53	High-resolution 3D woodpile structures by direct fs laser writing. Proceedings of SPIE, 2012, , .	0.8	2
54	Light-Regulated Supramolecular Engineering of Polymeric Nanocapsules. Journal of the American Chemical Society, 2012, 134, 5726-5729.	6.6	82

#	Article	IF	CITATIONS
55	3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Optics and Lasers in Engineering, 2012, 50, 1785-1788.	2.0	46
56	Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing. ACS Nano, 2012, 6, 2302-2311.	7.3	173
57	Microporous Polystyrene Particles for Selective Carbon Dioxide Capture. Langmuir, 2012, 28, 2690-2695.	1.6	38
58	3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing. Advances in OptoElectronics, 2012, 2012, 1-6.	0.6	7
59	Photodegradable Polymers for Biotechnological Applications. Macromolecular Rapid Communications, 2012, 33, 183-198.	2.0	111
60	Threeâ€Ðimensional Metallic Photonic Crystals with Optical Bandgaps. Advanced Materials, 2012, 24, 1101-1105.	11.1	88
61	Fabrication of three-dimensional conducting nanostructures by nonlinear lithography. , 2011, , .		0
62	Direct laser writing of microoptical structures using a Ge-containing hybrid material. Metamaterials, 2011, 5, 135-140.	2.2	20
63	3D conducting nanostructures fabricated using direct laser writing. Optical Materials Express, 2011, 1, 586.	1.6	80
64	Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polymer Chemistry, 2011, 2, 1234.	1.9	205
65	Laserâ€Induced Cell Detachment and Patterning with Photodegradable Polymer Substrates. Angewandte Chemie - International Edition, 2011, 50, 4142-4145.	7.2	53
66	Direct laser writing of microoptical structures using a germanium-containing hybrid photopolymer. , 2011, , .		0
67	3D active photonic nanostructures. , 2011, , .		0
68	Direct laser writing of gain and metallic nanostructures. , 2011, , .		0
69	End-Grafted Polymer Chains onto Inorganic Nano-Objects. Materials, 2010, 3, 1981-2026.	1.3	71
70	Three-dimensional direct writing of novel sol-gel composites for photonics applications. International Journal of Nanomanufacturing, 2010, 6, 164.	0.3	0
71	Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. Applied Physics A: Materials Science and Processing, 2010, 100, 359-364.	1.1	74
72	From Fluidic Selfâ€Assembly to Hierarchical Structures—Superhydrophobic Flexible Interfaces. Angewandte Chemie - International Edition, 2010, 49, 4542-4543.	7.2	12

#	Article	IF	CITATIONS
73	Following the Synthesis of Metal Nanoparticles within pH-Responsive Microgel Particles by SAXS. Macromolecules, 2010, 43, 9828-9836.	2.2	22
74	From superhydrophobicity and water repellency to superhydrophilicity: smart polymer-functionalized surfaces. Chemical Communications, 2010, 46, 4136.	2.2	123
75	Amphoteric Coreâ ``Shell Microgels: Contraphilic Two-Compartment Colloidal Particles. Langmuir, 2010, 26, 639-647.	1.6	39
76	Multiphoton polymerization of hybrid materials. Journal of Optics (United Kingdom), 2010, 12, 124001.	1.0	142
77	Copper-Catalyzed Bimolecular Coupling of α,ï‰-Dibromide-Functionalized Poly(γ-caprolactone). Macromolecules, 2010, 43, 3228-3232.	2.2	16
78	Multiresponsive Spiropyran-Based Copolymers Synthesized by Atom Transfer Radical Polymerization. Macromolecules, 2010, 43, 7073-7081.	2.2	92
79	Laser fabrication of nonlinear and metallic photonic nanostructures. , 2009, , .		Ο
80	Metal Nanocrystals Embedded within Polymeric Nanostructures: Effect of Polymer-Metal Compound Interactions. Topics in Catalysis, 2009, 52, 394-411.	1.3	23
81	Three-Dimensional Biodegradable Structures Fabricated by Two-Photon Polymerization. Langmuir, 2009, 25, 3219-3223.	1.6	177
82	Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Optics Express, 2009, 17, 2143.	1.7	121
83	Synthesis and characterization of novel glycosurfaces by ATRP. Soft Matter, 2009, 5, 1621.	1.2	47
84	Diol–boronic acid complexes integrated by responsive polymers—a route to chemical sensing and logic operations. Soft Matter, 2009, 5, 3839.	1.2	34
85	Synthesis of metallic nanoparticles within pH-sensitive polymeric matrices. International Journal of Nanotechnology, 2009, 6, 46.	0.1	9
86	Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Applied Physics A: Materials Science and Processing, 2008, 93, 11-15.	1.1	51
87	Adsorption characteristics of zwitterionic diblock copolymers at the silica/aqueous solution interface. Journal of Colloid and Interface Science, 2008, 317, 383-394.	5.0	17
88	Characterization of Layer-by-Layer Self-Assembled Multilayer Films of Diblock Copolymer Micelles. Langmuir, 2008, 24, 116-123.	1.6	33
89	Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication. ACS Nano, 2008, 2, 2257-2262.	7.3	443
90	Synthesis and characterization of the swelling and mechanical properties of amphiphilic ionizable model co-networks containing n-butyl methacrylate hydrophobic blocks. Soft Matter, 2008, 4, 268-276.	1.2	32

#	Article	IF	CITATIONS
91	Amphiphilic Networks Based on Cross-Linked Star Polymers:  A Small-Angle Neutron Scattering Study. Langmuir, 2007, 23, 10433-10437.	1.6	54
92	Cationic Amphiphilic Model Networks Based on Symmetrical ABCBA Pentablock Terpolymers:Â Synthesis, Characterization, and Modeling. Biomacromolecules, 2007, 8, 1615-1623.	2.6	37
93	Metal Nanocrystals Incorporated within pH-Responsive Microgel Particles. Langmuir, 2007, 23, 5761-5768.	1.6	73
94	Layer-by-Layer Formation of Smart Particle Coatings Using Oppositely Charged Block Copolymer Micelles. Advanced Materials, 2007, 19, 247-250.	11.1	67
95	Three different types of quasi-model networks: synthesis by group transfer polymerization and characterization. Polymer Bulletin, 2007, 58, 185-190.	1.7	32
96	Dynamic Light Scattering vs1H NMR Investigation of pH-Responsive Diblock Copolymers in Water. Macromolecules, 2006, 39, 5106-5112.	2.2	81
97	Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles. Faraday Discussions, 2005, 128, 129.	1.6	65
98	Synthesis of Amphiphilic (ABC)n Multiarm Star Triblock Terpolymers. Macromolecules, 2005, 38, 1021-1024.	2.2	17
99	Transformations of Poly(methoxy hexa(ethylene glycol) methacrylate)-b-(2-(diethylamino)ethyl) Tj ETQq1 1 0.78	4314 rgBT 1.6	/Qverlock 10
100	Synthesis, Characterization, and Evaluation as Transfection Reagents of Double-Hydrophilic Star Copolymers:Â Effect of Star Architecture. Biomacromolecules, 2005, 6, 2990-2997.	2.6	97
101	The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. Journal of Controlled Release, 2004, 97, 143-156.	4.8	118
102	Synthesis, characterization and evaluation of amphiphilic diblock copolymer emulsifiers based on methoxy hexa(ethylene glycol) methacrylate and benzyl methacrylate. Polymer, 2004, 45, 3681-3692.	1.8	20
103	Microphase separation under constraints: a molecular thermodynamic theory for polyelectrolytic amphiphilic model networks in water. Polymer, 2004, 45, 7341-7355.	1.8	47
104	Nanoscopic Cationic Methacrylate Star Homopolymers:Â Synthesis by Group Transfer Polymerization, Characterization and Evaluation as Transfection Reagents. Biomacromolecules, 2004, 5, 2221-2229.	2.6	129
105	Synthesis, Characterization, and Evaluation as Emulsifiers of Amphiphilicâ^'lonizable Aromatic Methacrylate ABC Triblock Terpolymers. Macromolecules, 2004, 37, 7181-7187.	2.2	24
106	Binding of Sodium Dodecyl Sulfate to Linear and Star Homopolymers of the Nonionic Poly(methoxyhexa(ethylene glycol) methacrylate) and the Polycation Poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
	Small-Angle Neutron Scattering Measurements. Langmuir, 2004, 20, 6458-6469.		
107	Cationic Double-Hydrophilic Model Networks:  Synthesis, Characterization, Modeling and Protein Adsorption Studies. Biomacromolecules, 2003, 4, 1150-1160.	2.6	36
108	Synthesis and Characterization of Double-Hydrophilic Model Networks Based on Cross-linked Star Polymers of Poly(ethylene glycol) Methacrylate and Methacrylic Acid. Macromolecules, 2002, 35, 4903-4911.	2.2	53

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Electrolytic Amphiphilic Model Networks Based on Cross-linked Star Polymers:Â Effect of Star Architecture. Chemistry of Materials, 2002, 14, 1630-1638.	3.2	81
110	Structure of pH-Dependent Block Copolymer Micelles:Â Charge and Ionic Strength Dependence. Macromolecules, 2002, 35, 8540-8551.	2.2	191
111	Synthesis, Characterization, and Modeling of Cationic Amphiphilic Model Hydrogels:Â Effects of Polymer Composition and Architecture. Macromolecules, 2002, 35, 2506-2513.	2.2	77
112	Synthesis and Characterization of Polyampholytic Model Networks:Â Effects of Polymer Composition and Architectureâ€. Macromolecules, 2002, 35, 2252-2260.	2.2	39
113	Synthesis, characterization and modeling of ABC triblock terpolymers: the effect of block sequence. Macromolecular Symposia, 2002, 183, 133-138.	0.4	5
114	Influence of polymer architecture on the structure of complexes formed by PEG–tertiary amine methacrylate copolymers and phosphorothioate oligonucleotide. Journal of Controlled Release, 2002, 81, 185-199.	4.8	62
115	Amphiphilic diblock and ABC triblock methacrylate copolymers: synthesis and aqueous solution characterization. Polymer, 2002, 43, 2921-2926.	1.8	47
116	Synthesis and aqueous solution characterization of novel diblock polyampholytes containing imidazole. Polymer, 2002, 43, 7269-7273.	1.8	41
117	Polyelectrolytic Amphiphilic Model Networks in Water:Â A Molecular Thermodynamic Theory for Their Microphase Separationâ€. Journal of Physical Chemistry B, 2001, 105, 4979-4986.	1.2	48
118	Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media. Journal of Materials Chemistry, 2001, 11, 2437-2444.	6.7	15
119	Synthesis and Characterization of Novel Networks with Nano-Engineered Structures:Â Cross-Linked Star Homopolymers. Chemistry of Materials, 2001, 13, 4738-4744.	3.2	54
120	Effect of Partial Quaternization on the Aqueous Solution Properties of Tertiary Amine-Based Polymeric Surfactants:Â Unexpected Separation of Surface Activity and Cloud Point Behavior. Macromolecules, 2001, 34, 6839-6841.	2.2	71
121	Characterization of hydrophilic networks synthesized by group transfer polymerization. Macromolecular Symposia, 2001, 171, 209-224.	0.4	8
122	Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy. Journal of Controlled Release, 2001, 73, 359-380.	4.8	125
123	Synthesis of novel cationic polymeric surfactants. Polymer, 2000, 41, 8501-8511.	1.8	39
124	Synthesis and aqueous solution properties of novel neutral/acidic block copolymers. Polymer, 2000, 41, 3173-3182.	1.8	52
125	Synthesis and Characterization of Vinyl Polymerâ^'Silica Colloidal Nanocomposites. Langmuir, 2000, 16, 6913-6920.	1.6	244

Synthesis of water-soluble statistical copolymers and terpolymers containing pendent oligo(ethylene) Tj ETQq0 0 0.000 mgBT /Overlock 10 Tf 1.8 mgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
127	Synthesis of Controlled Structure Water-Soluble Diblock Copolymers via Oxyanionic Polymerization. Macromolecules, 1999, 32, 2088-2090.	2.2	137
128	Synthesis of novel block and statistical methacrylate-based ionomers containing acidic, basic or betaine residues. Polymer, 1998, 39, 2331-2337.	1.8	25
129	Selective betainisation of tertiary amine methacrylate block copolymers. Journal of Materials Chemistry, 1997, 7, 1693-1695.	6.7	72
130	Solid-contact ion-selective electrode with stable internal electrode. Analytica Chimica Acta, 1996, 320, 53-61.	2.6	30