Bassim H Hameed

List of Publications by Citations

Source: https://exaly.com/author-pdf/82107/bassim-h-hameed-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36,059 182 101 304 h-index g-index citations papers 8.33 40,357 311 9.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
304	Insights into the modeling of adsorption isotherm systems. <i>Chemical Engineering Journal</i> , 2010 , 156, 2-10	14.7	4488
303	Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. <i>Journal of Hazardous Materials</i> , 2009 , 170, 520-9	12.8	1276
302	Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. <i>Journal of Hazardous Materials</i> , 2007 , 141, 819-25	12.8	981
301	Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. <i>Journal of Hazardous Materials</i> , 2008 , 154, 337-46	12.8	805
300	Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. <i>Chemical Engineering Journal</i> , 2007 , 127, 111-119	14.7	565
299	Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. <i>Journal of Hazardous Materials</i> , 2009 , 164, 870-5	12.8	540
298	Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. <i>Dyes and Pigments</i> , 2007 , 75, 143-149	4.6	479
297	Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. <i>Journal of Hazardous Materials</i> , 2009 , 164, 473-82	12.8	477
296	Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 74, 25-48	5.3	462
295	Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. <i>Chemical Engineering Journal</i> , 2008 , 144, 235-244	14.7	451
294	Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. <i>Journal of Hazardous Materials</i> , 2008 , 158, 65-72	12.8	430
293	Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. <i>Chemical Engineering Journal</i> , 2007 , 133, 195-203	14.7	418
292	Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials, 2010 , 175, 298-303	12.8	408
291	Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. <i>Journal of Hazardous Materials</i> , 2008 , 160, 576-81	12.8	401
290	The advancements in solgel method of doped-TiO2 photocatalysts. <i>Applied Catalysis A: General</i> , 2010 , 375, 1-11	5.1	400
289	An overview of landfill leachate treatment via activated carbon adsorption process. <i>Journal of Hazardous Materials</i> , 2009 , 171, 54-60	12.8	372
288	Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. <i>Journal of Hazardous Materials</i> , 2009 , 163, 121-6	12.8	371

(2009-2009)

Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. <i>Journal of Hazardous Materials</i> , 2009 , 161, 753-9	12.8	333
Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. <i>Desalination</i> , 2008 , 225, 13-28	10.3	321
Chitosantīlay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. <i>Chemical Engineering Journal</i> , 2014 , 237, 352-361	14.7	288
Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 70, 945-967	16.2	282
Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. <i>Desalination</i> , 2011 , 269, 1-16	10.3	274
Recent developments in the preparation and regeneration of activated carbons by microwaves. <i>Advances in Colloid and Interface Science</i> , 2009 , 149, 19-27	14.3	273
Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. <i>Journal of Hazardous Materials</i> , 2008 , 159, 574-9	12.8	273
Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. <i>Chemical Engineering Journal</i> , 2008 , 137, 462-470	14.7	268
Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. <i>Journal of Hazardous Materials</i> , 2010 , 175, 126-32	12.8	267
Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. <i>Journal of Hazardous Materials</i> , 2008 , 154, 204-12	12.8	265
A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. <i>Journal of Hazardous Materials</i> , 2009 , 162, 305-11	12.8	260
Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. <i>Journal of Hazardous Materials</i> , 2009 , 162, 939-44	12.8	257
Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. <i>Bioresource Technology</i> , 2012 , 104, 679-86	11	254
Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. <i>Journal of Hazardous Materials</i> , 2008 , 154, 237-44	12.8	248
Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. <i>Chemical Engineering Journal</i> , 2008 , 136, 164-172	14.7	246
Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. <i>Chemical Engineering Journal</i> , 2006 , 118, 99-105	14.7	240
Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. <i>Journal of Hazardous Materials</i> , 2008 , 153, 709-17	12.8	238
Batch adsorption of phenol onto physiochemical-activated coconut shell. <i>Journal of Hazardous Materials</i> , 2009 , 161, 1522-9	12.8	229
	Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. <i>Desalination</i> , 2008, 225, 13-28 Chitosantlay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. <i>Chemical Engineering Journal</i> , 2014, 237, 352-361 Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. <i>Renewable and Sustainable Energy Reviews</i> , 2017, 70, 945-967 Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. <i>Desalination</i> , 2011, 269, 1-16 Recent developments in the preparation and regeneration of activated carbons by microwaves. <i>Advances in Colloid and Interface Science</i> , 2009, 149, 19-27 Malachite green adsorption by rattan switch six betherm, kinetic and mechanism modeling. <i>Journal of Hazardous Materials</i> , 2008, 159, 574-9 Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. <i>Chemical Engineering Journal</i> , 2008, 137, 462-470 Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. <i>Journal of Hazardous Materials</i> , 2010, 175, 126-32 Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. <i>Journal of Hazardous Materials</i> , 2008, 154, 204-12 A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. <i>Journal of Hazardous Materials</i> , 2009, 162, 305-11 Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. <i>Journal of Hazardous Materials</i> , 2009, 162, 939-44 Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. <i>Bioresource Technology</i> , 2012, 104, 679-86 Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. <i>Journal of Hazardous Materials</i> , 2008, 154, 23	Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 2008, 225, 13-28 Chitosanilay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chemical Engineering Journal, 2014, 237, 352-361 14-7 Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews, 2017, 70, 945-967 Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 2011, 269, 1-16 Recent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Collaid and Interface Science, 2009, 149, 19-27 Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modeling. Journal of Hazardous Materials, 2008, 159, 574-9 Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chemical Engineering Journal, 2008, 137, 462-470 12-8 Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, 2010, 175, 126-32 Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, 2009, 162, 305-11 Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 2009, 162, 305-11 Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 2009, 162, 305-11 Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, 2009, 162, 393-44 Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technology, 2012, 104, 679-86 11-28 Batch removal of malachi

269	Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. <i>Chemical Engineering Journal</i> , 2008 , 139, 48-55	14.7	226
268	Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. <i>Chemical Engineering Journal</i> , 2014 , 250, 198-204	14.7	216
267	Calcium alginateBentoniteEctivated carbon composite beads as highly effective adsorbent for methylene blue. <i>Chemical Engineering Journal</i> , 2015 , 270, 621-630	14.7	209
266	Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance. <i>Chemical Engineering Journal</i> , 2012 , 184, 57-65	14.7	207
265	Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. <i>Chemical Engineering Journal</i> , 2012 , 198-199, 219-227	14.7	199
264	Detoxification of pesticide waste via activated carbon adsorption process. <i>Journal of Hazardous Materials</i> , 2010 , 175, 1-11	12.8	194
263	Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. <i>Chemical Engineering Journal</i> , 2011 , 171, 502-509	14.7	193
262	Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. <i>International Journal of Biological Macromolecules</i> , 2017 , 98, 233-239	7.9	192
261	Kinetics and equilibrium studies of malachite green adsorption on rice straw-derived char. <i>Journal of Hazardous Materials</i> , 2008 , 153, 701-8	12.8	189
260	Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K(2)CO(3) activation and subsequent gasification with CO(2). <i>Journal of Hazardous Materials</i> , 2008 , 157, 344-51	12.8	189
259	Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. <i>Journal of Environmental Management</i> , 2017 , 203, 237-244	7.9	187
258	Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. <i>Bioresource Technology</i> , 2016 , 221, 645-655	11	187
257	Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. <i>Journal of Hazardous Materials</i> , 2009 , 162, 344-50	12.8	186
256	Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. <i>Journal of Cleaner Production</i> , 2018 , 205, 930-954	10.3	183
255	Adsorption of direct dye on palm ash: kinetic and equilibrium modeling. <i>Journal of Hazardous Materials</i> , 2007 , 141, 70-6	12.8	176
254	Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. <i>Chemical Engineering Journal</i> , 2011 , 175, 233-243	14.7	175
253	Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies. <i>Water Research</i> , 2005 , 39, 2483-94	12.5	171
252	Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 138, 279-285	7	166

(2011-2011)

251	Fellay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. <i>Chemical Engineering Journal</i> , 2011 , 171, 912-918	14.7	162
250	Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: A comparative study. <i>Chemical Engineering Journal</i> , 2005 , 108, 179-185	14.7	157
249	Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. <i>Advances in Colloid and Interface Science</i> , 2009 , 152, 39-47	14.3	156
248	Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. <i>Bioresource Technology</i> , 2011 , 102, 9814-7	11	154
247	Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 316, 78-84	5.1	154
246	Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. <i>Bioresource Technology</i> , 2012 , 111, 425-32	11	152
245	Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 307, 45-52	5.1	151
244	Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology. <i>Journal of Hazardous Materials</i> , 2008 , 158, 324-32	12.8	149
243	Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels. Journal of Hazardous Materials, 2008 , 154, 639-48	12.8	148
242	Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 53, 558-574	16.2	143
241	Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst. <i>Journal of Hazardous Materials</i> , 2010 , 176, 938-44	12.8	142
240	Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 149, 257-266	7	142
239	Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. <i>Chemical Engineering Journal</i> , 2012 , 180, 66-7	1 44.7	141
238	Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon. <i>Desalination</i> , 2010 , 256, 129-135	10.3	140
237	Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. <i>Chemical Engineering Journal</i> , 2011 , 174, 41-48	14.7	139
236	Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. <i>Chemical Engineering Journal</i> , 2015 , 270, 187-195	14.7	138
235	Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. <i>Chemical Engineering Journal</i> , 2012 , 203, 9-18	14.7	138
234	Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea. <i>Chemical Engineering Journal</i> , 2011 , 166, 783-786	14.7	138

233	Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste. Journal of Hazardous Materials, 2008 , 158, 499-506	12.8	138
232	Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2,4,6-trichlorophenol: optimization using response surface methodology. <i>Journal of Hazardous Materials</i> , 2009 , 164, 1316-24	12.8	136
231	A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects. <i>Journal of Hazardous Materials</i> , 2009 , 170, 552-9	12.8	136
230	Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption. <i>Chemical Engineering Journal</i> , 2011 , 173, 391-395	9 ^{14.7}	130
229	Removal of basic dye from aqueous medium using a novel agricultural waste material: pumpkin seed hull. <i>Journal of Hazardous Materials</i> , 2008 , 155, 601-9	12.8	130
228	Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. <i>International Journal of Biological Macromolecules</i> , 2016 , 93, 1231-1239	7.9	127
227	Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. <i>Chemical Engineering Journal</i> , 2011 , 173, 385-390	14.7	126
226	Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. <i>Journal of Hazardous Materials</i> , 2010 , 173, 487-93	12.8	126
225	Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. <i>Chemical Engineering Journal</i> , 2011 , 174, 33-40	14.7	123
224	Preparation of activated carbon from date stones by microwave induced chemical activation: Application for methylene blue adsorption. <i>Chemical Engineering Journal</i> , 2011 , 170, 338-341	14.7	123
223	Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. <i>Bioresource Technology</i> , 2012 , 112, 143-50	11	120
222	Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. <i>Bioresource Technology</i> , 2011 , 102, 9229-35	11	119
221	Mesoporous zeolitelictivated carbon composite from oil palm ash as an effective adsorbent for methylene blue. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 70, 32-41	5.3	118
220	Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: An optimized process. <i>Fuel Processing Technology</i> , 2009 , 90, 606-610	7.2	118
219	Degradation of malachite green in aqueous solution by Fenton process. <i>Journal of Hazardous Materials</i> , 2009 , 164, 468-72	12.8	117
218	Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. <i>Microporous and Mesoporous Materials</i> , 2012 , 148, 191-	19 5 3	116
217	Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics. <i>Bioresource Technology</i> , 2017 , 243, 778-784	11	113
216	Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. <i>Chemical Engineering Journal</i> , 2012 , 187, 53-6	2 ^{14.7}	113

(2009-2009)

215	Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon. <i>Journal of Hazardous Materials</i> , 2009 , 172, 1538-43	12.8	113
214	Utilization of durian (Durio zibethinus Murray) peel as low cost sorbent for the removal of acid dye from aqueous solutions. <i>Biochemical Engineering Journal</i> , 2008 , 39, 338-343	4.2	112
213	Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 74, 96-104	5.3	111
212	Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2015 , 52, 57-64	5.3	111
211	Grass waste: a novel sorbent for the removal of basic dye from aqueous solution. <i>Journal of Hazardous Materials</i> , 2009 , 166, 233-8	12.8	110
210	Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. <i>Biomass and Bioenergy</i> , 2011 , 35, 3257-3261	5.3	109
209	Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters. <i>Bioresource Technology</i> , 2012 , 103, 398-404	11	108
208	Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. <i>Journal of Colloid and Interface Science</i> , 2012 , 386, 307-14	9.3	108
207	Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. <i>Chemical Engineering Journal</i> , 2011 , 166, 792-795	14.7	108
206	Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol. <i>Chemical Engineering Journal</i> , 2011 , 169, 180-185	14.7	108
205	Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 105, 199-206	6	107
204	Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes. <i>International Journal of Biological Macromolecules</i> , 2017 , 95, 895-902	7.9	104
203	New magnetic Schiff's base-chitosan-glyoxal/fly ash/FeO biocomposite for the removal of anionic azo dye: An optimized process. <i>International Journal of Biological Macromolecules</i> , 2020 , 146, 530-539	7.9	101
202	Utilization of bivalve shell-treated Zea mays L. (maize) husk leaf as a low-cost biosorbent for enhanced adsorption of malachite green. <i>Bioresource Technology</i> , 2012 , 120, 218-24	11	99
201	High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. <i>Bioresource Technology</i> , 2019 , 278, 159-164	11	99
200	Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. <i>Chemical Engineering Journal</i> , 2013 , 229, 388-398	14.7	97
199	An overview of dye removal via activated carbon adsorption process. <i>Desalination and Water Treatment</i> , 2010 , 19, 255-274		97
198	Removal of disperse dye from aqueous solution using waste-derived activated carbon: optimization study. <i>Journal of Hazardous Materials</i> , 2009 , 170, 612-9	12.8	93

197	Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium. <i>Chemical Engineering Journal</i> , 2011 , 173, 361-368	14.7	92
196	Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. <i>Desalination</i> , 2008 , 225, 185-198	10.3	92
195	Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. <i>Desalination</i> , 2011 , 275, 302-305	10.3	90
194	Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 318, 88-96	5.1	90
193	Decontamination of textile wastewater via TiO2/activated carbon composite materials. <i>Advances in Colloid and Interface Science</i> , 2010 , 159, 130-43	14.3	89
192	Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over K-zeolite derived from coal fly ash. <i>Fuel Processing Technology</i> , 2014 , 126, 5-11	7.2	88
191	Recent advances in functionalized composite solid materials for carbon dioxide capture. <i>Energy</i> , 2017 , 124, 461-480	7.9	86
190	Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste. <i>Journal of Hazardous Materials</i> , 2009 , 172, 523-31	12.8	84
189	Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. <i>Bioresource Technology</i> , 2011 , 102, 9794-9	11	82
188	A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. <i>Journal of Molecular Liquids</i> , 2017 , 240, 179-188	6	80
187	Degradation of Acid Blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous Photo-Fenton catalyst. <i>Applied Catalysis A: General</i> , 2013 , 450, 96-105	5.1	80
186	Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. <i>Applied Catalysis A: General</i> , 2012 , 413-414, 301-309	5.1	80
185	Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. <i>Journal of Industrial and Engineering Chemistry</i> , 2013 , 19, 1153-1161	6.3	78
184	Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. <i>Bioresource Technology</i> , 2015 , 179, 227-233	11	78
183	Effect of pretreatment by different organic solvents on esterification activity and conformation of immobilized Pseudomonas cepacia lipase. <i>Process Biochemistry</i> , 2010 , 45, 1176-1180	4.8	78
182	A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char. <i>Bioresource Technology</i> , 2016 , 200, 335-41	11	77
181	Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. <i>Bioresource Technology</i> , 2013 , 134, 166-72	11	77
180	Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. <i>Energy</i> , 2013 , 61, 440-446	7.9	77

179	Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. <i>Fuel Processing Technology</i> , 2012 , 99, 103-109	7.2	77
178	Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon. <i>Journal of Hazardous Materials</i> , 2010 , 176, 814-9	12.8	77
177	Role of 3-aminopropyltriethoxysilane in the preparation of mesoporous silica nanoparticles for ibuprofen delivery: Effect on physicochemical properties. <i>Microporous and Mesoporous Materials</i> , 2013 , 180, 235-241	5.3	76
176	Microwave-assisted regeneration of activated carbon. <i>Bioresource Technology</i> , 2012 , 119, 234-40	11	76
175	Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 383	3 -148 8	75
174	Decolorization of Acid Red 1 dye solution by Fenton-like process using FeMontmorillonite K10 catalyst. <i>Chemical Engineering Journal</i> , 2010 , 165, 111-116	14.7	75
173	Mg1+xCa1lO2 as reusable and efficient heterogeneous catalyst for the synthesis of glycerol carbonate via the transesterification of glycerol with dimethyl carbonate. <i>Applied Catalysis A: General</i> , 2013 , 466, 272-281	5.1	73
172	Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems. <i>Renewable and Sustainable Energy Reviews</i> , 2009 , 13, 2495-2504	16.2	70
171	Review on recent progress in chitosan/chitin-carbonaceous material composites for the adsorption of water pollutants. <i>Carbohydrate Polymers</i> , 2020 , 247, 116690	10.3	69
170	Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption. <i>Chemical Engineering Journal</i> , 2014 , 251, 183-191	14.7	69
169	Synthesis of hybrid SBA-15 functionalized with molybdophosphoric acid as efficient catalyst for glycerol esterification to fuel additives. <i>Applied Catalysis A: General</i> , 2012 , 433-434, 152-161	5.1	69
168	Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. <i>Journal of Hazardous Materials</i> , 2010 , 175, 133-7	12.8	68
167	Adsorption of reactive dye on palm-oil industry waste: Equilibrium, kinetic and thermodynamic studies. <i>Desalination</i> , 2009 , 247, 551-560	10.3	67
166	Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 110, 172-180	6	66
165	Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. <i>Chemical Engineering Journal</i> , 2012 , 183, 104-107	14.7	66
164	Oxidative decolorization of Acid Red 1 solutions by FeDeolite Y type catalyst. <i>Desalination</i> , 2011 , 276, 45-52	10.3	66
163	A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol byproduct of biodiesel. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 74, 387-401	16.2	63
162	Solventless acetalization of glycerol with acetone to fuel oxygenates over Ni\(\mathbb{I}\)r supported on mesoporous activated carbon catalyst. <i>Applied Catalysis A: General</i> , 2013 , 464-465, 191-199	5.1	62

161	Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: Optimization and kinetic modeling. <i>Chemical Engineering Journal</i> , 2012 , 197, 181	-1 9 2	62
160	Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. <i>Renewable Energy</i> , 2016 , 86, 392-398	8.1	60
159	Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. <i>Journal of Environmental Management</i> , 2015 , 154, 138-44	7.9	60
158	Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review. <i>Journal of Cleaner Production</i> , 2020 , 265, 121762	10.3	60
157	Improved production of fuel oxygenates via glycerol acetylation with acetic acid. <i>Chemical Engineering Journal</i> , 2014 , 243, 473-484	14.7	60
156	Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. <i>Bioresource Technology</i> , 2015 , 194, 14-20	11	59
155	Zeolite-hydroxyapatite-activated oil palm ash composite for antibiotic tetracycline adsorption. <i>Fuel</i> , 2018 , 215, 499-505	7.1	59
154	High-surface-area and nitrogen-rich mesoporous carbon material from fishery waste for effective adsorption of methylene blue. <i>Powder Technology</i> , 2017 , 321, 428-434	5.2	58
153	Process Optimization for Biodiesel Production from Waste Cooking Palm Oil (Elaeis guineensis) Using Response Surface Methodology. <i>Energy & Energy </i>	4.1	58
152	Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste. <i>Renewable and Sustainable Energy Reviews</i> , 2010 , 14, 1445-1452	16.2	58
151	Adsorption of carbon dioxide by diethanolamine activated alumina beads in a fixed bed. <i>Chemical Engineering Journal</i> , 2014 , 253, 350-355	14.7	57
150	Transesterification of palm oil to methyl ester on activated carbon supported calcium oxide catalyst. <i>Bioresource Technology</i> , 2011 , 102, 2659-64	11	57
149	Biofilm of cross-linked Chitosan-Ethylene Glycol Diglycidyl Ether for removal of Reactive Red 120 and Methyl Orange: Adsorption and mechanism studies. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 102965	6.8	57
148	Batch adsorption of 2,4-dichlorophenol onto activated carbon derived from agricultural waste. <i>Desalination</i> , 2010 , 255, 159-164	10.3	56
147	Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. <i>Korean Journal of Chemical Engineering</i> , 2014 , 31, 2198-2206	2.8	55
146	Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. <i>Fuel</i> , 2017 , 209, 538-544	7.1	55
145	Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. <i>Chemical Engineering Journal</i> , 2013 , 223, 604-610	14.7	54
144	Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation. <i>Bioresource Technology</i> , 2013 , 133, 599-	 605	53

143	The environmental applications of activated carbon/zeolite composite materials. <i>Advances in Colloid and Interface Science</i> , 2011 , 162, 22-8	14.3	53
142	Chitosan-glyoxal film as a superior adsorbent for two structurally different reactive and acid dyes: Adsorption and mechanism study. <i>International Journal of Biological Macromolecules</i> , 2019 , 135, 569-58	1 ^{7.9}	52
141	A rapid regeneration of methylene blue dye-loaded activated carbons with microwave heating. Journal of Analytical and Applied Pyrolysis, 2012 , 98, 123-128	6	52
140	A cost effective method for regeneration of durian shell and jackfruit peel activated carbons by microwave irradiation. <i>Chemical Engineering Journal</i> , 2012 , 193-194, 404-409	14.7	52
139	Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions. <i>Energy</i> , 2020 , 191, 116545	7.9	52
138	Pyrolysis of oil palm mesocarp fiber and palm frond in a slow-heating fixed-bed reactor: A comparative study. <i>Bioresource Technology</i> , 2017 , 241, 563-572	11	51
137	Stabilized ladle furnace steel slag for glycerol carbonate synthesis via glycerol transesterification reaction with dimethyl carbonate. <i>Energy Conversion and Management</i> , 2017 , 133, 477-485	10.6	51
136	Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 71, 47-54	5.3	50
135	Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. <i>Bioresource Technology</i> , 2013 , 130, 696-702	11	50
134	Effect of monohydric alcohols on enzymatic transesterification for biodiesel production. <i>Chemical Engineering Journal</i> , 2010 , 157, 223-229	14.7	50
133	Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 70, 179-187	5.3	49
132	Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed. <i>Energy</i> , 2014 , 77, 926-931	7.9	49
131	Fixed-bed adsorption performance of oil palm shell-based activated carbon for removal of 2,4,6-trichlorophenol. <i>Bioresource Technology</i> , 2009 , 100, 1494-6	11	49
130	Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed. <i>Energy</i> , 2018 , 155, 46-55	7.9	48
129	Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating. <i>Chemical Engineering Journal</i> , 2012 , 203, 81-87	14.7	48
128	Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst. <i>Bioresource Technology</i> , 2011 , 102, 6392-8	11	48
127	Enhancement of the photocatalytic activity of TiO(2) by doping it with calcium ions. <i>Journal of Colloid and Interface Science</i> , 2011 , 357, 168-78	9.3	48
126	Cross-linked chitosan thin film coated onto glass plate as an effective adsorbent for adsorption of reactive orange 16. <i>International Journal of Biological Macromolecules</i> , 2017 , 95, 743-749	7.9	46

125	Variation of the crystal growth of mesoporous silica nanoparticles and the evaluation to ibuprofen loading and release. <i>Journal of Colloid and Interface Science</i> , 2014 , 421, 6-13	9.3	46
124	Fixed-bed column adsorption of carbon dioxide by sodium hydroxide modified activated alumina. <i>Chemical Engineering Journal</i> , 2013 , 233, 80-87	14.7	46
123	Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process. <i>Journal of Industrial and Engineering Chemistry</i> , 2013 , 19, 966-974	6.3	46
122	Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CatelviiO2 composite photocatalyst. <i>Chemical Engineering Journal</i> , 2011 , 173, 369-375	14.7	46
121	Process optimization for methyl ester production from waste cooking oil using activated carbon supported potassium fluoride. <i>Fuel Processing Technology</i> , 2009 , 90, 1532-1537	7.2	46
120	Fixed-bed catalytic and non-catalytic empty fruit bunch biomass pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 107, 67-72	6	45
119	Highly active alumina-supported CsØr mixed oxide catalysts for low-temperature transesterification of waste cooking oil. <i>Applied Catalysis A: General</i> , 2014 , 487, 16-25	5.1	44
118	A highly active clay-based catalyst for the synthesis of fatty acid methyl ester from waste cooking palm oil. <i>Applied Catalysis A: General</i> , 2013 , 450, 57-62	5.1	44
117	Design and synthesis of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal. <i>Chemical Engineering Journal</i> , 2012 , 197, 350-358	14.7	44
116	Adsorption behavior of salicylic acid on biochar as derived from the thermal pyrolysis of barley straws. <i>Journal of Cleaner Production</i> , 2018 , 195, 1162-1169	10.3	44
115	Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. <i>Bioresource Technology</i> , 2012 , 111, 175-9	11	43
114	Batch adsorption of semi-aerobic landfill leachate by granular activated carbon prepared by microwave heating. <i>Chemical Engineering Journal</i> , 2013 , 222, 259-264	14.7	43
113	Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon-clay adsorbent for effective cationic and anionic dyes adsorption. <i>International Journal of Biological Macromolecules</i> , 2020 , 163, 1079	⁷ 1886	43
112	Catalytic pyrolysis of oil palm mesocarp fibre on a zeolite derived from low-cost oil palm ash. <i>Energy Conversion and Management</i> , 2016 , 127, 265-272	10.6	41
111	Transesterification of waste cooking palm oil by MnZr with supported alumina as a potential heterogeneous catalyst. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 4437-4442	6.3	41
110	Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst. <i>Bioresource Technology</i> , 2011 , 102, 10777-83	11	41
109	Upgrading of glycerol from biodiesel synthesis with dimethyl carbonate on reusable SrAl mixed oxide catalysts. <i>Energy Conversion and Management</i> , 2017 , 138, 183-189	10.6	40
108	Activated carbonllay composite as an effective adsorbent from the spent bleaching sorbent of olive pomace oil: Process optimization and adsorption of acid blue 29 and methylene blue. Chemical Engineering Research and Design, 2017, 128, 221-230	5.5	40

107	Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste. <i>Bioresource Technology</i> , 2012 , 116, 522-5	11	40
106	Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. <i>Desalination and Water Treatment</i> , 2012 , 37, 1-7		40
105	Adsorption Isotherms, Kinetics, Thermodynamics and Desorption Studies of Basic Dye on Activated Carbon Derived from Oil Palm Empty Fruit Bunch. <i>Journal of Applied Sciences</i> , 2010 , 10, 2565-2571	0.3	40
104	Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst. <i>Bioresource Technology</i> , 2013 , 128, 788-91	11	39
103	NaY zeolite from wheat (Triticum aestivum L.) straw ash used for the adsorption of tetracycline. <i>Journal of Cleaner Production</i> , 2018 , 172, 602-608	10.3	38
102	Chitosan: A Natural Biopolymer for the Adsorption of Residue Oil from Oily Wastewater. <i>Adsorption Science and Technology</i> , 2004 , 22, 75-88	3.6	38
101	Activated electric arc furnace slag as an efficient and reusable heterogeneous Fenton-like catalyst for the degradation of Reactive Black 5. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 67, 235-243	5.3	38
100	Glycerol carbonate synthesis from glycerol and dimethyl carbonate using trisodium phosphate. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 68, 51-58	5.3	37
99	Adsorption behavior of cadmium ions onto phosphoric acid-impregnated microwave-induced mesoporous activated carbon. <i>Journal of Water Process Engineering</i> , 2016 , 14, 60-70	6.7	36
98	KyMg1⊠Zn1+xO3 as a heterogeneous catalyst in the transesterification of palm oil to fatty acid methyl esters. <i>Applied Catalysis A: General</i> , 2009 , 371, 191-198	5.1	36
97	One-pot synthesis of glycidol from glycerol and dimethyl carbonate over KF/sepiolite catalyst. <i>Applied Catalysis A: General</i> , 2014 , 487, 181-188	5.1	35
96	Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-Fenton process. <i>Applied Clay Science</i> , 2013 , 83-84, 171-181	5.2	35
95	Biodiesel byproduct glycerol upgrading to glycerol carbonate over lithiumBil palm ash zeolite. <i>Energy Conversion and Management</i> , 2017 , 151, 472-480	10.6	35
94	Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed. <i>Energy</i> , 2017 , 138, 776-784	7.9	35
93	Activated Carbon from the Renewable Agricultural Residues Using Single Step Physical Activation: A Preliminary Analysis. <i>APCBEE Procedia</i> , 2012 , 3, 84-92		35
92	Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic. <i>Bioresource Technology</i> , 2019 , 280, 255-259	11	33
91	New insight into electrochemical-induced synthesis of NiAl2O4/Al2O3: Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd(II). <i>Applied Surface Science</i> , 2015 , 349, 485-495	6.7	33
90	Pyrolysis of oil palm mesocarp fiber catalyzed with steel slag-derived zeolite for bio-oil production. <i>Bioresource Technology</i> , 2018 , 249, 42-48	11	33

89	Organic dye adsorption on activated carbon derived from solid waste. <i>Desalination and Water Treatment</i> , 2013 , 51, 2554-2563		33
88	Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses. <i>Bioresource Technology</i> , 2017 , 243, 85-92	11	33
87	Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst. <i>Bioresource Technology</i> , 2011 , 102, 3819-26	11	33
86	Alum as a heterogeneous catalyst for the transesterification of palm oil. <i>Applied Catalysis A: General</i> , 2009 , 370, 54-58	5.1	32
85	Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue 29. <i>Journal of Environmental Management</i> , 2017 , 196, 323-329	7.9	31
84	Ordered mesoporous carbons originated from non-edible polyethylene glycol 400 (PEG-400) for chloramphenicol antibiotic recovery from liquid phase. <i>Chemical Engineering Journal</i> , 2015 , 260, 730-73	9 ^{14.7}	31
83	Optimized and functionalized paper sludge activated with potassium fluoride for single and binary adsorption of reactive dyes. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 830-840	6.3	31
82	Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst. <i>Bioresource Technology</i> , 2016 , 214, 248-252	11	31
81	Economically viable production of biodiesel from a rural feedstock from eastern India, P. pinnata oil using a recyclable laboratory synthesized heterogeneous catalyst. <i>Energy Conversion and Management</i> , 2016 , 122, 52-62	10.6	30
80	Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite. <i>Bioresource Technology</i> , 2019 , 284, 406-414	11	29
79	Fe-modified local clay as effective and reusable heterogeneous photo-Fenton catalyst for the decolorization of Acid Green 25. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2014 , 45, 1459-1	4 <i>67</i> 3	29
78	Alternate coating and porosity as dependent factors for the photocatalytic activity of solgel derived TiO2 films. <i>Chemical Engineering Journal</i> , 2011 , 174, 190-198	14.7	29
77	Acid Red 1 dye decolorization by heterogeneous Fenton-like reaction using Fe/kaolin catalyst. <i>Desalination</i> , 2011 , 269, 291-293	10.3	29
76	Transformation of durian biomass into a highly valuable end commodity: Trends and opportunities. <i>Biomass and Bioenergy</i> , 2011 , 35, 2470-2478	5.3	29
75	Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst. <i>Renewable Energy</i> , 2014 , 66, 680-685	8.1	28
74	Synthesis of FAME from the methanolysis of palm fatty acid distillate using highly active solid oxide acid catalyst. <i>Fuel Processing Technology</i> , 2014 , 124, 54-60	7.2	28
73	2,4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: isotherm and kinetic modeling. <i>Desalination and Water Treatment</i> , 2015 , 55, 132-141		27
72	Mercerized mesoporous date pit activated carbon-A novel adsorbent to sequester potentially toxic divalent heavy metals from water. <i>PLoS ONE</i> , 2017 , 12, e0184493	3.7	27

71	Transesterification of biodiesel byproduct glycerol and dimethyl carbonate over porous biochar derived from pyrolysis of fishery waste. <i>Energy Conversion and Management</i> , 2018 , 165, 794-800	10.6	27
70	Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Alto Imodified MgZnO catalyst. <i>Bioresource Technology</i> , 2013 , 132, 103-8	11	27
69	Photocatalytic degradation of Acid Red 1 dye using ZnO catalyst in the presence and absence of silver. <i>Desalination and Water Treatment</i> , 2011 , 27, 204-209		27
68	Gas oil hydrocracking on NiW/USY catalyst: Effect of tungsten and nickel loading. <i>Chemical Engineering Journal</i> , 2007 , 132, 77-83	14.7	27
67	Chromium B ungsten heterogeneous catalyst for esterification of palm fatty acid distillate to fatty acid methyl ester. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2015 , 54, 64-70	5.3	26
66	Adsorptive removal of methylene blue using the natural adsorbent-banana leaves. <i>Desalination and Water Treatment</i> , 2014 , 52, 6104-6112		26
65	Fenton-like oxidation of reactive black 5 solution using iron-Montmorillonite K10 catalyst. <i>Journal of Hazardous Materials</i> , 2010 , 176, 1118-21	12.8	26
64	Co-hydrothermal carbonization of different feedstocks to hydrochar as potential energy for the future world: A review. <i>Journal of Cleaner Production</i> , 2021 , 298, 126734	10.3	25
63	Synthesis of glycerol free-fatty acid methyl esters from Jatropha oil over Calla mixed-oxide catalyst. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 58, 181-188	5.3	24
62	Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: A review. <i>Journal of Environmental Management</i> , 2019 , 252, 10961	7 7.9	24
61	Adsorption of acid blue 29 and methylene blue on mesoporous K2CO3-activated olive pomace boiler ash. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 535, 157-165	5.1	24
60	Transesterification of Jatropha oil with dimethyl carbonate to produce fatty acid methyl ester over reusable CallaAl mixed-oxide catalyst. <i>Energy Conversion and Management</i> , 2015 , 106, 1356-1361	10.6	23
59	Single-step esterification of crude karanj (Pongamia pinnata) oil to fatty acid methyl esters over mesostructured SBA-16 supported 12-molybdophosphoric acid catalyst. <i>Fuel Processing Technology</i> , 2013 , 114, 12-20	7.2	23
58	Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: A review. <i>Journal of Water Process Engineering</i> , 2020 , 38, 101380	6.7	23
57	Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. <i>Journal of Cleaner Production</i> , 2021 , 303, 127018	10.3	23
56	Transesterification of waste cooking palm oil and palm oil to fatty acid methyl ester using cesium-modified silica catalyst. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 58, 226-234	5.3	22
55	Hydrogenation of glucose and fructose into hexitols over heterogeneous catalysts: A review. Journal of the Taiwan Institute of Chemical Engineers, 2019 , 96, 341-352	5.3	22
54	Adsorption of methylene blue onto papaya leaves: comparison of linear and nonlinear isotherm analysis. <i>Desalination and Water Treatment</i> , 2014 , 52, 6712-6719		21

53	Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters. <i>Bioresource Technology</i> , 2018 , 264, 198-205	11	20
52	Selective Acetalization of Glycerol with Acetone Over Nickel Nanoparticles Supported on Multi-Walled Carbon Nanotubes. <i>Catalysis Letters</i> , 2014 , 144, 1009-1015	2.8	19
51	Solar degradation of an azo dye, acid red 1, by Callel IIIO2 composite catalyst. <i>Chemical Engineering Journal</i> , 2011 , 169, 91-99	14.7	19
50	Transesterification of palm oil on KyMg1\\\Zn1+xO3 catalyst: Effect of Mg\\\Zn interaction. <i>Fuel Processing Technology</i> , 2010 , 91, 653-659	7.2	19
49	Hydrocracking of petroleum gas oil over NiW/MCM-48-USY composite catalyst. <i>Fuel Processing Technology</i> , 2007 , 88, 921-928	7.2	19
48	Potential of activated carbon adsorption processes for the remediation of nuclear effluents: a recent literature. <i>Desalination and Water Treatment</i> , 2012 , 41, 72-78		18
47	Yttrium-grafted mesostructured SBA-3 catalyst for the transesterification of glycerol with methyl acetate to synthesize fuel oxygenates. <i>Applied Catalysis A: General</i> , 2013 , 460-461, 61-69	5.1	18
46	ChromiumBungstenBtanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate. <i>Energy Conversion and Management</i> , 2014 , 88, 669-676	10.6	16
45	Food cannery effluent, pineapple peel as an effective low-cost biosorbent for removing cationic dye from aqueous solutions. <i>Desalination and Water Treatment</i> , 2014 , 52, 6096-6103		16
44	Characterization and hydrocracking of gas oil on sulfided NiW/MCM-48 catalysts. <i>Chemical Engineering Journal</i> , 2007 , 132, 173-181	14.7	16
43	A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol. <i>Science of the Total Environment</i> , 2020 , 719, 134595	10.2	16
42	A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes. <i>Catalysts</i> , 2021 , 11, 782	4	16
41	Developments in activated functionalized carbons and their applications in water decontamination: a review. <i>Desalination and Water Treatment</i> , 2015 , 54, 422-449		15
40	A comparative study of the photocatalytic efficiency of Degussa P25, Qualigens, and Hombikat UV-100 in the degradation kinetic of congo red dye. <i>Desalination and Water Treatment</i> , 2012 , 46, 188-1	95	15
39	Decolorization of sunzol black DN conc. in aqueous solution by Fenton oxidation process, effect of system parameters and kinetic study. <i>Desalination and Water Treatment</i> , 2012 , 1-7		15
38	Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103981	6.8	14
37	Modeling of disperse dye adsorption onto bamboo-based activated carbon in fixed-bed column. <i>Desalination and Water Treatment</i> , 2014 , 52, 248-256		14
36	Sorption/desorption studies on some natural minerals for the removal of toxic organic pollutants from aqueous solution. <i>Chemical Engineering Journal</i> , 2009 , 152, 421-427	14.7	14

35	Mesoporous and high-surface-area activated carbon from defatted olive cake by-products of olive mills for the adsorption kinetics and isotherm of methylene blue and acid blue 29. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104199	6.8	13
34	Kinetics and deactivation of a dual-site heterogeneous oxide catalyst during the transesterification of crude jatropha oil with methanolPeer review under responsibility of Taibah University. View all notes. <i>Journal of Taibah University for Science</i> , 2016 , 10, 685-699	3	13
33	Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters. <i>Arabian Journal of Chemistry</i> , 2021 , 14, 1030)3 ⁵ 5 ⁹	13
32	Photocatalytic activity of solgel-derived mesoporous TiO2 thin films for reactive orange 16 degradation. <i>Desalination and Water Treatment</i> , 2015 , 53, 3604-3614		12
31	Synthesis of methyl esters from palm (Elaeis guineensis) oil using cobalt doped MgO as solid oxide catalyst. <i>Bioresource Technology</i> , 2011 , 102, 9749-54	11	12
30	Nitric acid-treated bamboo waste as low-cost adsorbent for removal of cationic dye from aqueous solution. <i>Desalination and Water Treatment</i> , 2010 , 21, 357-363		12
29	Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst. <i>Fuel</i> , 2019 , 245, 89-95	7.1	12
28	Desorption of chloramphenicol from ordered mesoporous carbon-alginate beads: Effects of operating parameters, and isotherm, kinetics, and regeneration studies. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105015	6.8	12
27	ChitosanBleaching earth clay composite as an efficient adsorbent for carbon dioxide adsorption: Process optimization. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 554, 9-15	5.1	11
26	Development and photocatalytic activities of TiO2 doped with Callel in the degradation of acid red 1 under visible light irradiation. <i>Desalination and Water Treatment</i> , 2014 , 52, 5639-5651		11
25	Color and COD reduction from cotton textile processing wastewater by activated carbon derived from solid waste in column mode. <i>Desalination and Water Treatment</i> , 2012 , 41, 224-231		11
24	Removal of crystal violet dye from aqueous solutions using rubber (hevea brasillensis) seed shell-based biosorbent. <i>Desalination and Water Treatment</i> , 2012 , 48, 174-181		11
23	ChromiumBungstenBhanganese oxides for synthesis of fatty acid methyl ester via esterification of palm fatty acid distillate. <i>Energy</i> , 2017 , 141, 1989-1997	7.9	11
22	Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. <i>International Journal of Biological Macromolecules</i> , 2021 , 186, 314-327	7.9	11
21	Iron-clay as a reusable heterogeneous Fenton-like catalyst for decolorization of Acid Green 25. Desalination and Water Treatment, 2014 , 52, 5583-5593		10
20	Fenton oxidation for soil remediation: A critical review of observations in historically contaminated soils. <i>Journal of Hazardous Materials</i> , 2021 , 424, 127670	12.8	10
19	Insight into the chemically modified crop straw adsorbents for the enhanced removal of water contaminants: A review. <i>Journal of Molecular Liquids</i> , 2021 , 330, 115616	6	10
18	Photocatalytic degradation of wastewater containing acid red 1 dye by titanium dioxide: effect of calcination temperature. <i>Desalination and Water Treatment</i> , 2012 , 43, 84-90		9

17	Preparation and characterization of activated carbon from melon (Citrullus vulgaris) seed hull by microwave-induced NaOH activation. <i>Desalination and Water Treatment</i> , 2012 , 47, 130-138		9
16	Development of activated carbon from Phoenix dactylifera fruit pits: Process optimization, characterization, and methylene blue adsorption62, 273-281		9
15	Adsorption of cationic dye using a low-cost biowaste adsorbent: equilibrium, kinetic, and thermodynamic study. <i>Desalination and Water Treatment</i> , 2014 , 52, 6088-6095		8
14	Deoxygenation of pyrolysis vapour derived from durian shell using catalysts prepared from industrial wastes rich in Ca, Fe, Si and Al. <i>Science of the Total Environment</i> , 2020 , 703, 134902	10.2	8
13	Dark-Fenton oxidative degradation of methylene blue and acid blue 29 dyes using sulfuric acid-activated slag of the steel-making process. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104831	6.8	8
12	Lithium loaded coal fly ash as sustainable and effective catalyst for the synthesis of glycerol carbonate from glycerol. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105999	6.8	7
11	Riboflavin adsorption onto multi-modal mesoporous carbon synthesized from polyethylene glycol 400. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 297-305	14.7	6
10	Utilization of biochars as sustainable catalysts for upgrading of glycerol from biodiesel production. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104768	6.8	6
9	Recent Progress on Nanomaterial-Based Membranes for Water Treatment Membranes, 2021, 11,	3.8	5
8	A review on microwave-assisted synthesis of adsorbents and its application in the removal of water pollutants. <i>Journal of Water Process Engineering</i> , 2021 , 41, 102006	6.7	5
7	An evaluation of the reliability of the characterization of the porous structure of activated carbons based on incomplete nitrogen adsorption isotherms. <i>Journal of Molecular Modeling</i> , 2017 , 23, 238	2	4
6	Solar light responsive TiO2-ZnO, modified with graphitic carbon nitride nano-sheet for degradation of AB29. <i>Journal of Chemical Technology and Biotechnology</i> , 2020 , 95, 2674	3.5	4
5	Valorization of biodiesel byproduct glycerol to glycerol carbonate using highly reusable apatite-like catalyst derived from waste Gastropoda Mollusca. <i>Biomass Conversion and Biorefinery</i> , 2020 , 1	2.3	3
4	Optimization of Methyl Ester Production from Waste Palm Oil Using Activated Carbon Supported Calcium Oxide Catalyst. <i>Solid State Phenomena</i> , 2018 , 280, 346-352	0.4	2
3	Effect of Microwave Heating Variables on Nitrogen-Enriched Palm Shell Activated Carbon toward Efficient Hydrogen Sulfide Removal. <i>Solid State Phenomena</i> , 2018 , 280, 315-322	0.4	1
2	A comprehensive review on application of plant-based bioadsorbents for Congo red removal. Biomass Conversion and Biorefinery,1	2.3	1
1	A mini review of recent progress in the removal of emerging contaminants from pharmaceutical waste using various adsorbents <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	О