Rodolfo Múgica-Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8210453/publications.pdf

Version: 2024-02-01

22 papers 418 citations

11 h-index 752698 20 g-index

22 all docs 22 docs citations

times ranked

22

467 citing authors

#	Article	IF	CITATIONS
1	Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel. Food Research International, 2022, 152, 109891.	6.2	13
2	Promotion of biofilm production via atmospheric-pressure plasma-polymerization for biomedical applications. Applied Surface Science, 2022, 581, 152350.	6.1	8
3	Application of atmospheric pressure cold plasma to sanitize oak wine barrels. LWT - Food Science and Technology, 2021, 139, 110509.	5.2	7
4	Improvement of the adhesive capacity of SBR for footwear outsoles by surface activation and coating deposition with atmospheric pressure plasma. Plasma Processes and Polymers, 2021, 18, 2100046.	3.0	4
5	Atmospheric-pressure plasma treatments of NBR for the improvement of adhesion in footwear applications. International Journal of Adhesion and Adhesives, 2021, 108, 102865.	2.9	8
6	Inhibition of biofilm formation on polystyrene substrates by atmospheric pressure plasma polymerization of siloxaneâ€based coatings. Plasma Processes and Polymers, 2021, 18, e2100097.	3.0	2
7	Durability Assessment of a Plasma-Polymerized Coating with Anti-Biofilm Activity against L. monocytogenes Subjected to Repeated Sanitization. Foods, 2021, 10, 2849.	4.3	6
8	Atmospheric pressure cold plasma anti-biofilm coatings for 3D printed food tools. Innovative Food Science and Emerging Technologies, 2020, 64, 102404.	5 . 6	18
9	Antibiofilm coatings through atmospheric pressure plasma for 3D printed surgical instruments. Surface and Coatings Technology, 2020, 399, 126163.	4.8	14
10	Effect of the Atmospheric Pressure Cold Plasma Treatment on Tempranillo Red Wine Quality in Batch and Flow Systems. Beverages, 2019, 5, 50.	2.8	9
11	Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. Food and Bioprocess Technology, 2019, 12, 1251-1263.	4.7	27
12	A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Frontiers in Microbiology, 2019, 10, 622.	3.5	155
13	A Virtual Learning Environment to Support Project Management Teaching. Advances in Intelligent Systems and Computing, 2018, , 751-759.	0.6	3
14	Analysis of the Online Interactions of Students in the Project Management Learning Process. Advances in Intelligent Systems and Computing, 2018, , 743-750.	0.6	1
15	Antifriction aminopropyltriethoxysilane films on thermoplastic elastomer substrates using an APPJ system. Surface and Coatings Technology, 2017, 310, 239-250.	4.8	8
16	Atmospheric pressure air plasma treatment of glass substrates for improved silver/glass adhesion in solar mirrors. Solar Energy Materials and Solar Cells, 2017, 169, 287-296.	6.2	15
17	Reducing friction on glass substrates by atmospheric plasma-polymerization of APTES. Surface and Coatings Technology, 2017, 309, 1062-1071.	4.8	9
18	Improvement in the Design of Welded Joints of EN 235JR Low Carbon Steel by Multiple Response Surface Methodology. Metals, 2016, 6, 205.	2.3	27

#	Article	IF	CITATIONS
19	Promotion of tribological and hydrophobic properties of a coating on TPE substrates by atmospheric plasma-polymerization. Applied Surface Science, 2016, 371, 50-60.	6.1	15
20	Enhanced surface friction coefficient and hydrophobicity of TPE substrates using an APPJ system. Applied Surface Science, 2015, 328, 554-567.	6.1	17
21	Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon. Applied Surface Science, 2015, 347, 325-335.	6.1	20
22	Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates. Surface and Coatings Technology, 2014, 259, 374-385.	4.8	32