Satoshi Shioiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8210081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visual attention around a hand location localized by proprioceptive information. Cerebral Cortex Communications, 2022, 3, tgac005.	0.7	2
2	Effects of listening task characteristics on auditory spatial attention in multi-source environment. Acoustical Science and Technology, 2021, 42, 12-21.	0.3	2
3	Contribution of the slow motion mechanism to global motion revealed by an MAE technique. Scientific Reports, 2021, 11, 3995.	1.6	1
4	MA and Togetherness (Ittaikan) in the Narratives of Dancers and Spectators: Sharing an Uncertain Space. Japanese Psychological Research, 2021, 63, 421-433.	0.4	2
5	Quali-Informatics in the Society with Yotta Scale Data. , 2021, , .		9
6	Crispness, the Key for the Palatability of "Kakinotane― A Sensory Study with Onomatopoeic Words. Foods, 2021, 10, 1724.	1.9	6
7	Perceptions sociales du « Ma » et de « l'être ensemble ». Techniques and Culture, 2	02 0, ,1116	-125.
8	Basic color categories in Mandarin Chinese revealed by cluster analysis. Journal of Vision, 2020, 20, 6.	0.1	6
9	A motion-in-depth model based on inter-ocular velocity to estimate direction in depth. Vision Research, 2020, 172, 11-26.	0.7	3
10	Displacement detection is suppressed by the post-saccadic stimulus. Scientific Reports, 2020, 10, 9273.	1.6	7
11	Effects of content and viewing distance on the preferred size of moving images. Journal of Vision, 2020, 20, 6.	0.1	2
12	Temporal characteristics of auditory spatial attention on word intelligibility. Acoustical Science and Technology, 2020, 41, 394-395.	0.3	1
13	Interpersonal communication on the Japanese concept ``Ma''. Acoustical Science and Technology, 2020, 41, 2-5.	0.3	1
14	[papers] Viewers' Susceptibility to Image Blurs in Watching Ultra-high-definition TV Correlates with Their Dynamic Visual Acuity. ITE Transactions on Media Technology and Applications, 2019, 7, 103-110.	0.3	0
15	Estimation of physiological sources of nonlinearity in blood oxygenation level-dependent contrast signals. Magnetic Resonance Imaging, 2018, 46, 121-129.	1.0	7
16	Influence of Auditory Selective Attention on Word Intelligibility. , 2018, , .		0
17	Extracting the orientation of rotating objects without object identification: Object orientation induction. Journal of Vision, 2018, 18, 17.	0.1	1
18	Spatial representations of the viewer's surroundings. Scientific Reports, 2018, 8, 7171.	1.6	9

#	Article	IF	CITATIONS
19	Behavior Understanding Based on Intention-Gait Model. , 2017, , 139-172.		3
20	The modern Japanese color lexicon. Journal of Vision, 2017, 17, 1.	0.1	48
21	Contrast dependence of saccadic blanking and landmark effects. Vision Research, 2016, 129, 1-12.	0.7	11
22	Visual attention spreads broadly but selects information locally. Scientific Reports, 2016, 6, 35513.	1.6	20
23	Saliency-based gaze prediction based on head direction. Vision Research, 2015, 117, 59-66.	0.7	26
24	Smooth pursuit eye movements and motion perception share motion signals in slow and fast motion mechanisms. Journal of Vision, 2015, 15, 12.	0.1	7
25	Attentional facilitation of detection of flicker on moving objects. Journal of Vision, 2015, 15, 3.	0.1	4
26	Facilitation of Visual Perception in Head Direction: Visual Attention Modulation Based on Head Direction. PLoS ONE, 2015, 10, e0124367.	1.1	13
27	Eye-Head Coordination for Visual Cognitive Processing. PLoS ONE, 2015, 10, e0121035.	1.1	75
28	[Paper] Eye-Position Distribution Depending on Head Orientation when Observing Movies on Ultrahigh-Definition Television. ITE Transactions on Media Technology and Applications, 2015, 3, 149-154.	0.3	14
29	Measurement of Object-based Attention with Steady-state Visual Evoked Potential. Japanese Journal of Physiological Psychology and Psychophysiology, 2015, 33, 33-46.	0.0	2
30	Active Movements Generate Rotation-Independent Representations for Haptic Movements. Interdisciplinary Information Sciences, 2015, 21, 115-123.	0.2	1
31	Chromatic induction from surrounding stimuli under perceptual suppression. Visual Neuroscience, 2014, 31, 387-400.	0.5	2
32	Moving One's Own Body Part Induces a Motion Aftereffect Anchored to the Body Part. Current Biology, 2014, 24, 165-169.	1.8	14
33	Why Do We Move Our Head to Look at an Object in Our Peripheral Region? Lateral Viewing Interferes with Attentive Search. PLoS ONE, 2014, 9, e92284.	1.1	32
34	Rotation-independent representations for haptic movements. Scientific Reports, 2013, 3, 2595.	1.6	7
35	Temporal Dynamics of Visual Attention Measured with Event-Related Potentials. PLoS ONE, 2013, 8, e70922.	1.1	9
36	Time Courses of Attentional Modulation in Neural Amplification and Synchronization Measured with Steady-state Visual-evoked Potentials. Journal of Cognitive Neuroscience, 2012, 24, 1779-1793.	1.1	61

#	Article	IF	CITATIONS
37	Isolation of two binocular mechanisms for motion in depth: A model and psychophysics ¹ . Japanese Psychological Research, 2012, 54, 16-26.	0.4	5
38	60.1: Control of Subjective Depth by Quantified Monocular Depth Cues of Contrast and Spatial Frequencies. Digest of Technical Papers SID International Symposium, 2012, 43, 812-815.	0.1	0
39	Implicit Learning of Viewpoint-Independent Spatial Layouts. Frontiers in Psychology, 2012, 3, 207.	1.1	16
40	Low-level motion analysis of color and luminance for perception of 2D and 3D motion. Journal of Vision, 2012, 12, 33-33.	0.1	10
41	Asymmetrical brain activity induced by voluntary spatial attention depends on the visual hemifield: A functional near-infrared spectroscopy study. Brain and Cognition, 2011, 75, 292-298.	0.8	8
42	Nonlinear two-stage model for color discrimination. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 704.	0.8	0
43	Control of subjective depth on 3-D displays by a quantified monocular depth cue. Journal of the Society for Information Display, 2011, 19, 29.	0.8	6
44	Decoding Color Responses in Human Visual Cortex. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A, 473-479.	0.2	6
45	61.1: Control of Subjective Depth in Stereoscopic Motion Pictures by Quantified Aerial Perspective. Digest of Technical Papers SID International Symposium, 2011, 42, 908-911.	0.1	0
46	Measuring attention using flash-lag effect. Journal of Vision, 2010, 10, 10-10.	0.1	26
47	Motion mechanisms with different spatiotemporal characteristics identified by an MAE techniquewith superimposed gratings. Journal of Vision, 2009, 9, 30-30.	0.1	17
48	Psychophysical evidence for a purely binocular color system. Vision Research, 2009, 49, 202-210.	0.7	10
49	Integration of monocular motion signals and the analysis of interocular velocity differences for the perception of motion-in-depth. Journal of Vision, 2009, 9, 10-10.	0.1	22
50	Differences in temporal frequency tuning between the two binocular mechanisms for seeing motion in depth. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1574.	0.8	31
51	A new method for assessing motion-in-depth perception in strabismic patients. British Journal of Ophthalmology, 2008, 92, 47-50.	2.1	30
52	Stereo channels with different temporal frequency tunings. Vision Research, 2007, 47, 289-297.	0.7	12
53	Two distinct cone-opponent processes in the L+M luminance pathway. Vision Research, 2007, 47, 1839-1854.	0.7	6
54	Spatial Spread of Visual Attention while Tracking a Moving Object. Optical Review, 2007, 14, 57-63.	1.2	12

#	Article	IF	CITATIONS
55	Title is missing!. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2006, 60, 1018-1023.	0.0	0
56	The Effect of Exposure Duration on Stereopsis and Its Dependency on Spatial Frequency. Optical Review, 2004, 11, 258-264.	1.2	6
57	Change of Color Appearance in Photopic, Mesopic and Scotopic Vision. Optical Review, 2004, 11, 265-271.	1.2	37
58	A Color Appearance Model Applicable in Mesopic Vision. Optical Review, 2004, 11, 272-278.	1.2	24
59	Effects of Temporal Frequency and Contrast on Spatial Frequency Characteristics for Disparity Threshold. Optical Review, 2003, 10, 120-123.	1.2	7
60	Color Discrimination Characteristics Depending on the Background Color in the (L, M) Plane of a Cone Space. Optical Review, 2003, 10, 391-397.	1.2	4
61	Adaptation to relative and uniform motion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 1465.	0.8	10
62	Detection of relative and uniform motion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2002, 19, 2169.	0.8	36
63	Smooth shifts of visual attention. Vision Research, 2002, 42, 2811-2816.	0.7	30
64	Correlation between visual and colorimetric scales ranging from threshold to large color difference. Color Research and Application, 2002, 27, 349-359.	0.8	14
65	Binocular depth perception for moving images. , 2001, , .		0
66	Estimation of Color-Difference Formulae at Color Discrimination Threshold Using CRT-Generated Stimuli. Optical Review, 2001, 8, 142-147.	1.2	11
67	Testing CIELAB-based color-difference formulae using large color differences. Optical Review, 2001, 8, 487.	1.2	21
68	Nonlinearity in color space measured by apparent motion. Perception & Psychophysics, 2000, 62, 1182-1190.	2.3	6
69	Luminance-Type Additive Mechanism Produces Shading. Optical Review, 2000, 7, 260-265.	1.2	0
70	Technique to investigate the temporal phase shift between L- and M-cone inputs to the luminance mechanism. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 846.	0.8	8
71	Motion in depth based on inter-ocular velocity differences. Vision Research, 2000, 40, 2565-2572.	0.7	92
72	Tracking the apparent location of targets in interpolated motion. Vision Research, 2000, 40, 1365-1376.	0.7	29

#	Article	IF	CITATIONS
73	Selective cone suppression by the L–M- and M–L-cone-opponent mechanisms in the luminance pathway. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16, 1217.	0.8	9
74	Spectral luminous efficiency based on shading perception. Journal of the Illuminating Engineering Institute of Japan (Shomei Gakkai Shi), 1995, 79, 169-169.	0.1	0
75	Effect of Spatial Frequency on Equal-Luminance Point for the Mechanism of Shape from Shading. Optical Review, 1995, 2, 81-84.	1.2	0
76	Spatial frequency channels for stereoscopic depth perception. Optical Review, 1994, 1, 311-313.	1.2	12
77	Postsaccadic processing of the retinal image during picture scanning. Perception & Psychophysics, 1993, 53, 305-314.	2.3	19
78	Individual differences of the contribution of chromatic channels to brightness. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 1373.	0.8	28
79	Visual persistence of figures defined by relative motion. Vision Research, 1992, 32, 943-951.	0.7	29
80	Achromatic form perception is based on luminance, not brightness. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1992, 9, 1672.	0.8	10
81	ISI produces reverse apparent motion. Vision Research, 1990, 30, 757-768.	0.7	66
82	Saccadic suppression of low-level motion. Vision Research, 1989, 29, 915-928.	0.7	187
83	Useful Resolution for Picture Percention as a Function of Eccentricity Percention 1989, 18, 347-361	0.5	191