List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209857/publications.pdf Version: 2024-02-01

ALREDTO SANZ

#	Article	IF	CITATIONS
1	Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience, 2022, 44, 1961-1974.	2.1	10
2	Mitochondrial electron transport chain defects modify Parkinson's disease phenotypes in a Drosophila model. Neurobiology of Disease, 2022, 171, 105803.	2.1	6
3	Model Cells and Organisms in Mitochondrial Diseases. , 2021, , 231-271.		0
4	Inhibition of the NLRP3 inflammasome prevents ovarian aging. Science Advances, 2021, 7, .	4.7	74
5	Coenzyme Q redox signalling and longevity. Free Radical Biology and Medicine, 2021, 164, 187-205.	1.3	27
6	Editorial: "Mitochondrial coenzyme Q homeostasis: Signalling, respiratory chain stability and diseases.". Free Radical Biology and Medicine, 2021, 169, 12-13.	1.3	3
7	L-Arginine Ameliorates Defective Autophagy in GM2 Gangliosidoses by mTOR Modulation. Cells, 2021, 10, 3122.	1.8	2
8	Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster. Redox Biology, 2020, 32, 101450.	3.9	40
9	Coenzyme Q and Aging in the Fruit Fly Drosophila melanogaster. , 2020, , 141-155.		0
10	Essential Physiological Differences Characterize Short- and Long-Lived Strains of Drosophila melanogaster. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1835-1843.	1.7	9
11	Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nature Communications, 2018, 9, 256.	5.8	132
12	The role of mitochondrial <scp>ROS</scp> in the aging brain. FEBS Letters, 2018, 592, 743-758.	1.3	259
13	Site-specific ROS signalling during ageing. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e11.	0.5	Ο
14	<i> <scp>OXA</scp> 1L </i> mutations cause mitochondrial encephalopathy and a combined oxidative phosphorylation defect. EMBO Molecular Medicine, 2018, 10, .	3.3	54
15	Editorial: Coenzyme Q Redox State and Cellular Homeostasis. Frontiers in Physiology, 2018, 9, 912.	1.3	3
16	Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease. Frontiers in Physiology, 2017, 8, 428.	1.3	332
17	Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster. PLoS ONE, 2016, 11, e0161817.	1.1	29
18	Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. Cell Metabolism, 2016, 23, 725-734.	7.2	296

#	Article	IF	CITATIONS
19	Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan?. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1116-1126.	0.5	84
20	Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich Membrane Structure. Scientific Reports, 2015, 5, 15292.	1.6	73
21	β carbonic anhydrase is required for female fertility in Drosophila melanogaster. Frontiers in Zoology, 2015, 12, 19.	0.9	11
22	High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. Journal of Insect Physiology, 2015, 79, 42-54.	0.9	94
23	Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 187, 27-39.	0.8	15
24	Target of rapamycin activation predicts lifespan in fruit flies. Cell Cycle, 2015, 14, 2949-2958.	1.3	23
25	High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 180, 75-85.	0.8	71
26	Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency. Human Molecular Genetics, 2014, 23, 2078-2093.	1.4	57
27	The interplay between mitochondrial protein and iron homeostasis and its possible role in ageing. Experimental Gerontology, 2014, 56, 123-134.	1.2	17
28	A genome-wide RNAi screening to identify new genes involved in mitochondrial diseases. Mitochondrion, 2013, 13, 944.	1.6	0
29	Regulation of Lifespan by the Mitochondrial Electron Transport Chain: Reactive Oxygen Species-Dependent and Reactive Oxygen Species-Independent Mechanisms. Antioxidants and Redox Signaling, 2013, 19, 1953-1969.	2.5	59
30	A Cytoplasmic Suppressor of a Nuclear Mutation Affecting Mitochondrial Functions in <i>Drosophila</i> . Genetics, 2012, 192, 483-493.	1.2	23
31	dj-1β regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster. Cell Cycle, 2012, 11, 3876-3886.	1.3	25
32	Mitochondrial complex I: A central regulator of the aging process. Cell Cycle, 2011, 10, 1528-1532.	1.3	70
33	Mitochondria and Ageing. Journal of Aging Research, 2011, 2011, 1-3.	0.4	65
34	Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. Journal of Bioenergetics and Biomembranes, 2010, 42, 135-142.	1.0	34
35	Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction, Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice. PLoS ONE, 2010, 5, e11468.	1.1	225
36	Expression of the yeast NADH dehydrogenase Ndi1 in <i>Drosophila</i> confers increased lifespan independently of dietary restriction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9105-9110.	3.3	132

#	Article	IF	CITATIONS
37	Mitochondrial ROS production correlates with, but does not directly regulate lifespan in drosophila. Aging, 2010, 2, 200-223.	1.4	101
38	Expression of the Ciona intestinalis Alternative Oxidase (AOX) in Drosophila Complements Defects in Mitochondrial Oxidative Phosphorylation. Cell Metabolism, 2009, 9, 449-460.	7.2	156
39	The Mitochondrial Free Radical Theory of Aging: A Critical View. Current Aging Science, 2008, 1, 10-21.	0.4	142
40	Dietary Protein Restriction Decreases Oxidative Protein Damage, Peroxidizability Index, and Mitochondrial Complex I Content in Rat Liver. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 352-360.	1.7	96
41	Evaluation of sex differences on mitochondrial bioenergetics and apoptosis in mice. Experimental Gerontology, 2007, 42, 173-182.	1.2	64
42	Effect of graded corticosterone treatment on aging-related markers of oxidative stress in rat liver mitochondria. Biogerontology, 2007, 8, 1-11.	2.0	31
43	Effects of fasting on oxidative stress in rat liver mitochondria. Free Radical Research, 2006, 40, 339-347.	1.5	88
44	La restricción de metionina en la dieta disminuye el estrés oxidativo en mitocondrias de corazón. Revista Espanola De Geriatria Y Gerontologia, 2006, 41, 334-339.	0.2	0
45	Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB Journal, 2006, 20, 1064-1073.	0.2	217
46	Estimation of the Rate of Production of Oxygen Radicals by Mitochondria. , 2006, , 183-189.		11
47	Effect of Lipid Restriction on Mitochondrial Free Radical Production and Oxidative DNA Damage. Annals of the New York Academy of Sciences, 2006, 1067, 200-209.	1.8	47
48	Testing the vicious cycle theory of mitochondrial ROS production: effects of H2O2 and cumene hydroperoxide treatment on heart mitochondria. Journal of Bioenergetics and Biomembranes, 2006, 38, 121-127.	1.0	46
49	Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. Journal of Bioenergetics and Biomembranes, 2006, 38, 327-333.	1.0	57
50	Is the Mitochondrial Free Radical Theory of Aging Intact?. Antioxidants and Redox Signaling, 2006, 8, 582-599.	2.5	221
51	Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogerontology, 2005, 6, 15-26.	2.0	64
52	Protein and lipid oxidative damage and complex I content are lower in the brain of budgerigar and canaries than in mice. Relation to aging rate. Age, 2005, 27, 267-280.	3.0	63
53	Dietary Restriction at Old Age Lowers Mitochondrial Oxygen Radical Production and Leak at Complex I and Oxidative DNA Damage in Rat Brain. Journal of Bioenergetics and Biomembranes, 2005, 37, 83-90.	1.0	149
54	Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. Experimental Gerontology, 2004, 39, 725-733.	1.2	64

#	Article	IF	CITATIONS
55	Protein Restriction Without Strong Caloric Restriction Decreases Mitochondrial Oxygen Radical Production and Oxidative DNA Damage in Rat Liver. Journal of Bioenergetics and Biomembranes, 2004, 36, 545-552.	1.0	122
56	Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radical Biology and Medicine, 2002, 32, 882-889.	1.3	252
57	Long-lived Ames dwarf mice: Oxidative damage to mitochondrial DNA in heart and brain. Age, 2002, 25, 119-122.	3.0	32
58	Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB Journal, 2001, 15, 1589-1591.	0.2	340