
## Samuel Couve-Bonnaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209814/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fluorocyclopropane-Containing Proline Analogue: Synthesis and Conformation of an Item in the Peptide Chemist's Toolbox. ACS Omega, 2022, 7, 4868-4878.                                                                          | 3.5  | 4         |
| 2  | Catalytic Asymmetric Syntheses of Alkylidenecyclopropanes from Allenoates with Donorâ€Acceptor and Diacceptor Diazo Reagents. Chemistry - A European Journal, 2022, 28, .                                                       | 3.3  | 3         |
| 3  | Phospha-Michael Addition on α-Fluorinated Acrylates: A Straightforward Access to Polyfunctionalized<br>Fine Chemicals. Journal of Organic Chemistry, 2022, 87, 9210-9221.                                                       | 3.2  | 3         |
| 4  | Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF <sub>2</sub> ontaining<br>Trisubstituted Cyclopropanes. Angewandte Chemie - International Edition, 2021, 60, 7072-7076.                                   | 13.8 | 40        |
| 5  | Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF 2 â€Containing Trisubstituted Cyclopropanes. Angewandte Chemie, 2021, 133, 7148-7152.                                                                     | 2.0  | 7         |
| 6  | Synthesis of Fluoroâ€; Monofluoromethylâ€; Difluoromethylâ€; and Trifluoromethylâ€Substituted<br>Threeâ€Membered Rings. Chemistry - A European Journal, 2021, 27, 2935-2962.                                                    | 3.3  | 40        |
| 7  | Wonderful fusion of organofluorine chemistry and decarboxylation strategy. Chemical Society Reviews, 2021, 50, 6094-6151.                                                                                                       | 38.1 | 64        |
| 8  | Access to Trisubstituted Fluoroalkenes by Ruthenium atalyzed Crossâ€Metathesis. Advanced Synthesis<br>and Catalysis, 2021, 363, 2140-2147.                                                                                      | 4.3  | 13        |
| 9  | Palladiumâ€Catalysed Oxidative Decarboxylative Crossâ€Coupling of Heteroarenes with CF 3 â€Acrylic Acids.<br>ChemistrySelect, 2021, 6, 7367-7371.                                                                               | 1.5  | 1         |
| 10 | <i>gem</i> â€Heteroatomâ€Substituted Fluoroalkenes as Mimics of Amide Derivatives or Phosphates: A<br>Comprehensive Review. Chemistry - A European Journal, 2021, 27, 17273-17292.                                              | 3.3  | 23        |
| 11 | Metal-Catalyzed Metathesis of Fluorinated Alkenes: Still a Current Major Challenge. ACS Catalysis, 2021, 11, 12307-12323.                                                                                                       | 11.2 | 7         |
| 12 | Frontispiece: <i>gem</i> â€Heteroatomâ€6ubstituted Fluoroalkenes as Mimics of Amide Derivatives or<br>Phosphates: A Comprehensive Review. Chemistry - A European Journal, 2021, 27, .                                           | 3.3  | 0         |
| 13 | <i>S</i> â€(Diethyl phosphonodifluoromethyl)Benzenesulfonothioate: A New Reagent for the Synthesis<br>of SCF <sub>2</sub> PO(OEt) <sub>2</sub> â€containing Molecules. Advanced Synthesis and Catalysis,<br>2020, 362, 760-764. | 4.3  | 16        |
| 14 | Ligand Free Palladiumâ€Catalyzed Synthesis of αâ€Trifluoromethylacrylic Acids and Related Acrylates by<br>Threeâ€Component Reaction. Advanced Synthesis and Catalysis, 2020, 362, 949-954.                                      | 4.3  | 6         |
| 15 | Organocatalyzed Sulfa-Michael Addition of Thiophenols on Trisubstituted α-Fluoroacrylates, a<br>Straightforward Access to Chiral Fluorinated Compounds. Journal of Organic Chemistry, 2020, 85,<br>14055-14067.                 | 3.2  | 8         |
| 16 | Ligand-free palladium-catalyzed Mizoroki-Heck reaction to synthesize valuable<br>α-trifluoromethylacrylates. Journal of Fluorine Chemistry, 2020, 233, 109483.                                                                  | 1.7  | 5         |
| 17 | Synthesis of α-Trifluoromethylacrylates by Ligand-Free Palladium-Catalyzed Mizoroki-Heck Reaction.<br>Journal of Organic Chemistry, 2019, 84, 2072-2082.                                                                        | 3.2  | 14        |
| 18 | Effect of Fluorination on Skin Sensitization Potential and Fragrant Properties of Cinnamyl<br>Compounds. Chemistry and Biodiversity, 2018, 15, e1800013.                                                                        | 2.1  | 5         |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis of αâ€Fluorinated Acrylates by a Palladiumâ€Catalyzed Decarboxylative Olefination Reaction.<br>European Journal of Organic Chemistry, 2018, 2018, 3705-3715.                                               | 2.4  | 17        |
| 20 | Ring-closing metathesis of fluoroalkenes toward the synthesis of fluorinated heterocycles containing an oxaza bond. Comptes Rendus Chimie, 2018, 21, 740-748.                                                        | 0.5  | 4         |
| 21 | Transition metal-free stereospecific access to (E)-(1-fluoro-2-arylvinyl)phosphine borane complexes.<br>Chemical Communications, 2017, 53, 2048-2051.                                                                | 4.1  | 9         |
| 22 | Metalâ€Catalyzed Direct C–H Fluoroalkenylation of Pyridine <i>N</i> â€Oxides and Related Derivatives.<br>European Journal of Organic Chemistry, 2017, 2017, 3049-3054.                                               | 2.4  | 14        |
| 23 | Access to Constrained Fluoropseudopeptides via Ring-Closing Metathesis of Fluoroalkenes. Organic<br>Letters, 2016, 18, 3606-3609.                                                                                    | 4.6  | 21        |
| 24 | Stereospecific Synthesis of Tri- and Tetrasubstituted α-Fluoroacrylates by Mizoroki–Heck Reaction.<br>Organic Letters, 2016, 18, 540-543.                                                                            | 4.6  | 46        |
| 25 | Copper-catalyzed direct C–H fluoroalkenylation of heteroarenes. Organic and Biomolecular<br>Chemistry, 2016, 14, 353-357.                                                                                            | 2.8  | 15        |
| 26 | Toward the Synthesis of Fluorinated Analogues of HCV NS3/4A Serine Protease Inhibitors Using<br>Methyl α-Amino-β-fluoro-β-vinylcyclopropanecarboxylate as Key Intermediate. Organic Letters, 2015, 17,<br>2968-2971. | 4.6  | 16        |
| 27 | The fluoroalkene motif as a surrogate of the amide bond: syntheses of AA-Î <sup>-</sup> [(Z) and (E)-CFCH]-Pro pseudodipeptides and an Enalapril analogue. Tetrahedron, 2015, 71, 7054-7062.                         | 1.9  | 22        |
| 28 | Efficient access to fluorinated homoallylic alcohols through an indium promoted fluoroallylation reaction. Tetrahedron, 2014, 70, 3123-3133.                                                                         | 1.9  | 9         |
| 29 | Indium-Promoted Diastereoselective Addition of Fluorinated Haloallylic Derivatives to Imines. Journal of Organic Chemistry, 2014, 79, 2916-2925.                                                                     | 3.2  | 17        |
| 30 | Pd―and Cu atalyzed Stereo―and Regiocontrolled Decarboxylative/CH Fluoroalkenylation of<br>Heteroarenes. Chemistry - A European Journal, 2014, 20, 15000-15004.                                                      | 3.3  | 54        |
| 31 | Access to Fluorinated Lactams through Ring-Closing Metathesis of Reluctant Fluoroalkenes<br>Promoted by Appropriate Substitution of a Double Bond. ACS Catalysis, 2014, 4, 2374-2378.                                | 11.2 | 18        |
| 32 | Straightforward asymmetric synthesis of Ala-Ψ[CFĩ€CH]-Pro, a proline-containing pseudodipeptide<br>bearing a fluoroolefin as a peptide bond mimic. New Journal of Chemistry, 2013, 37, 1320-1325.                    | 2.8  | 17        |
| 33 | Fluorinated Pseudopeptide Analogues of the Neuropeptide 26RFa: Synthesis, Biological, and Structural<br>Studies. ChemBioChem, 2013, 14, 1620-1633.                                                                   | 2.6  | 38        |
| 34 | Ethyl dibromofluoroacetate: a versatile reagent for the synthesis ofÂfluorinated molecules.<br>Tetrahedron, 2013, 69, 11039-11055.                                                                                   | 1.9  | 11        |
| 35 | Synthesis of Fluorinated Cyclopropyl Amino Acid Analogues: Toward the Synthesis of Original Fluorinated Peptidomimetics Journal of Organic Chemistry, 2013, 78, 212-223.                                             | 3.2  | 30        |
| 36 | Palladium―and Copperâ€Catalyzed Stereocontrolled Direct Cï£;H Fluoroalkenylation of Heteroarenes<br>using <i>gem</i> â€Bromofluoroalkenes. Angewandte Chemie - International Edition, 2013, 52, 3246-3249.           | 13.8 | 50        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A practical and straightforward access to fluorinated homoallylic alcohols in aqueous media.<br>Tetrahedron Letters, 2013, 54, 2821-2824.                                                                                                                    | 1.4  | 9         |
| 38 | Diethylzincâ€Mediated Addition of 2,2â€Dibromoâ€2â€fluoroacetamides to Carbonyl Compounds: Synthesis of<br>αâ€Bromoâ€Î±â€fluoroâ€Î²â€hydroxy Amides and/or ( <i>Z</i> )â€Fluorovinyl Amides. European Journal of Organi<br>Chemistry, 2013, 2013, 3278-3289. | C2.4 | 13        |
| 39 | Syntheses and Applications of Monofluorinated Cyclopropanes. Chemistry - A European Journal, 2012, 18, 14904-14917.                                                                                                                                          | 3.3  | 68        |
| 40 | Asymmetric Synthesis of Cyclopropanes with a Monofluorinated Quaternary Stereocenter. Organic Letters, 2012, 14, 5130-5133.                                                                                                                                  | 4.6  | 26        |
| 41 | One-Step Synthesis of Highly Functionalized Monofluorinated Cyclopropanes from Electron-Deficient<br>Alkenes. Organic Letters, 2012, 14, 2270-2273.                                                                                                          | 4.6  | 34        |
| 42 | Synthesis of fluorinated pseudopeptides: metal mediated reversal of stereochemistry in<br>diastereoselective addition of organometallic reagents to N-(tert-butanesulfinyl)-α-fluoroenimines.<br>Organic and Biomolecular Chemistry, 2011, 9, 2378.          | 2.8  | 23        |
| 43 | Fluorine & chirality: how to create a nonracemic stereogenic carbon–fluorine centre?. Chemical<br>Society Reviews, 2010, 39, 558-568.                                                                                                                        | 38.1 | 218       |
| 44 | Diastereocontrolled addition of organometallic reagents to S-chiral<br>N-(tert-butanesulfinyl)-α-fluoroenimines. Tetrahedron Letters, 2009, 50, 264-266.                                                                                                     | 1.4  | 25        |
| 45 | Synthesis of tetrasubstituted α-fluoroenones. Tetrahedron, 2009, 65, 6034-6038.                                                                                                                                                                              | 1.9  | 14        |
| 46 | 6-Azido d-galactose transfer to N-acetyl-d-glucosamine derivative using commercially available<br>β-1,4-galactosyltransferase. Tetrahedron Letters, 2008, 49, 2294-2297.                                                                                     | 1.4  | 10        |
| 47 | Chiral dipeptide mimics possessing a fluoroolefin moiety: a relevant tool for conformational and medicinal studies. Organic and Biomolecular Chemistry, 2007, 5, 1151.                                                                                       | 2.8  | 182       |
| 48 | Diastereomeric Fluoroolefins as Peptide Bond Mimics Prepared by Asymmetric Reductive Amination of<br>α-Fluoroenones. Angewandte Chemie - International Edition, 2007, 46, 1290-1292.                                                                         | 13.8 | 123       |
| 49 | First enantioselective reductive amination of α-fluoroenones. Journal of Fluorine Chemistry, 2007, 128, 34-39.                                                                                                                                               | 1.7  | 18        |
| 50 | First Stereospecific Synthesis of (E)- or (Z)-α-Fluoroenones via a Kinetically Controlled Negishi<br>Coupling Reaction. Journal of Organic Chemistry, 2006, 71, 4316-4319.                                                                                   | 3.2  | 53        |
| 51 | Stereocontrolled Solid-Phase Synthesis of a 90-Membered Library of Indoline-Alkaloid-like Polycycles<br>from an Enantioenriched Aminoindoline Scaffold. Angewandte Chemie - International Edition, 2005,<br>44, 1366-1368.                                   | 13.8 | 72        |
| 52 | Solution- and Solid-Phase Synthesis of Natural Product-Like Tetrahydroquinoline-Based Polycyclics<br>Having a Medium Size Ring. ACS Combinatorial Science, 2004, 6, 735-745.                                                                                 | 3.3  | 23        |
| 53 | A Solid-Phase, Library Synthesis of Natural-Product-Like Derivatives from an Enantiomerically Pure<br>Tetrahydroquinoline Scaffold. ACS Combinatorial Science, 2004, 6, 73-77.                                                                               | 3.3  | 19        |
| 54 | Palladium-catalyzed carbonylative coupling of pyridine halides with aryl boronic acids. Tetrahedron, 2003, 59, 2793-2799.                                                                                                                                    | 1.9  | 77        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Direct Synthesis of Benzoylpyridines from Chloropyridines via a Palladium-Carbene Catalyzed<br>Carbonylative Suzuki Cross-Coupling Reaction. Synlett, 2003, 2003, 1874-1876.               | 1.8 | 2         |
| 56 | Palladium-catalyzed carbonylative cross-coupling reactions of pyridine halides and aryl boronic acids: a convenient access to α-pyridyl ketones. Tetrahedron Letters, 2001, 42, 3689-3691. | 1.4 | 69        |
| 57 | Catalytic Synthesis and Asymmetric Reduction of Pyridylglyoxylic Amides and Esters. Advanced Synthesis and Catalysis, 2001, 343, 289-298.                                                  | 4.3 | 2         |
| 58 | Synthesis of pyridylglyoxylic acid derivatives via a palladium-catalysed double carbonylation of iodopyridines. Tetrahedron Letters, 1999, 40, 3717-3718.                                  | 1.4 | 30        |