
Amanda Mizukami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Research and Therapy, 2019, 10, 131.	2.4	342
2	Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells International, 2018, 2018, 1-13.	1.2	99
3	Stirred tank bioreactor culture combined with serumâ€∤xenogeneicâ€free culture medium enables an efficient expansion of umbilical cordâ€derived mesenchymal stem/stromal cells. Biotechnology Journal, 2016, 11, 1048-1059.	1.8	56
4	Growth and functional harvesting of human mesenchymal stromal cells cultured on a microcarrierâ€based system. Biotechnology Progress, 2014, 30, 889-895.	1.3	55
5	Technologies for large-scale umbilical cord-derived MSC expansion: Experimental performance and cost of goods analysis. Biochemical Engineering Journal, 2018, 135, 36-48.	1.8	55
6	Expansion strategies for human mesenchymal stromal cells culture under xenoâ€free conditions. Biotechnology Progress, 2017, 33, 1358-1367.	1.3	46
7	Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. Journal of Biomaterials Applications, 2015, 29, 1155-1166.	1.2	43
8	Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system. Biotechnology Progress, 2013, 29, 568-572.	1.3	33
9	A Fully-Closed and Automated Hollow Fiber Bioreactor for Clinical-Grade Manufacturing of Human Mesenchymal Stem/Stromal Cells. Stem Cell Reviews and Reports, 2018, 14, 141-143.	5.6	30
10	Characterization of Human AB Serum for Mesenchymal Stromal Cell Expansion. Transfusion Medicine and Hemotherapy, 2017, 44, 11-21.	0.7	20
11	Proteomic Identification and Time-Course Monitoring of Secreted Proteins During Expansion of Human Mesenchymal Stem/Stromal in Stirred-Tank Bioreactor. Frontiers in Bioengineering and Biotechnology, 2019, 7, 154.	2.0	16
12	Platforms for Recombinant Therapeutic Glycoprotein Production. Methods in Molecular Biology, 2018, 1674, 1-14.	0.4	15
13	Successful Use of Human AB Serum to Support the Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cell in a Microcarrier-Based Platform. Frontiers in Bioengineering and Biotechnology, 2020, 8, 307.	2.0	12
14	Improving wave-induced motion bioreactor performance for human mesenchymal stromal cell expansion. Process Biochemistry, 2019, 84, 143-152.	1.8	11
15	Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor. Biochemical Engineering Journal, 2021, 168, 107949.	1.8	9
16	Production of coagulation factor VII in human cell lines Sk-Hep-1 andÂHKB-11. Protein Expression and Purification, 2017, 137, 26-33.	0.6	6
17	Immunophenotypic Analysis of CAR-T Cells. Methods in Molecular Biology, 2020, 2086, 195-201.	0.4	6
18	Serum-Free Suspension Adaptation of HEK-293T Cells: Basis for Large-Scale Biopharmaceutical Production. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	3

#	Article	IF	CITATIONS
19	Transition from serum-supplemented monolayer to serum-free suspension lentiviral vector production for generation of chimeric antigen receptor T cells. Cytotherapy, 2022, 24, 850-860.	0.3	1