Yongjie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209600/publications.pdf

Version: 2024-02-01

17 papers	335 citations	7 h-index	996954 15 g-index
17	17	17	421
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Larger temperature response of autumn leaf senescence than spring leafâ€out phenology. Global Change Biology, 2018, 24, 2159-2168.	9.5	124
2	Three times greater weight of daytime than of nightâ€time temperature on leaf unfolding phenology in temperate trees. New Phytologist, 2016, 212, 590-597.	7.3	82
3	Root distribution responses to three-dimensional soil heterogeneity in experimental mesocosms. Plant and Soil, 2017, 421, 353-366.	3.7	28
4	Unimodal relationship between three-dimensional soil heterogeneity and plant species diversity in experimental mesocosms. Plant and Soil, 2019, 436, 397-411.	3.7	18
5	Species coexistence in a lattice-structured habitat: Effects of species dispersal and interactions. Journal of Theoretical Biology, 2014, 359, 184-191.	1.7	16
6	A simple method to vary soil heterogeneity in three dimensions in experimental mesocosms. Ecological Research, 2017, 32, 287-295.	1.5	16
7	Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species Across a Precipitation Gradient. Frontiers in Plant Science, 2021, 12, 650802.	3.6	10
8	Effects of three-dimensional soil heterogeneity on seed germination in controlled experiments. Journal of Plant Ecology, 2021, 14, 1-9.	2.3	8
9	The effects of clonal integration on the responses of plant species to habitat loss and habitat fragmentation. Ecological Modelling, 2018, 384, 290-295.	2.5	7
10	Effects of Temperature and Salinity on Seed Germination of Three Common Grass Species. Frontiers in Plant Science, 2021, 12, 731433.	3.6	6
11	Threeâ€dimensional soil heterogeneity modulates responses of grassland mesocosms to an experimentally imposed drought extreme. Oikos, 2021, 130, 1209-1223.	2.7	5
12	Effects of three-dimensional soil heterogeneity and species composition on plant biomass and biomass allocation of grass-mixtures. AoB PLANTS, 2021, 13, plab033.	2.3	5
13	Effects of Soil Heterogeneity and Species on Plant Interactions. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5
14	Effects of Water Addition on Reproductive Allocation of Dominant Plant Species in Inner Mongolia Steppe. Frontiers in Plant Science, 2020, $11,555743$.	3.6	2
15	Effects of water supply on plant stoichiometry of C, N, P in Inner Mongolia grasslands. Plant and Soil, 0, , .	3.7	2
16	Growth Indicators of Main Species Predict Aboveground Biomass of Population and Community on a Typical Steppe. Plants, 2020, 9, 1314.	3.5	1
17	Simulating root distribution of plant individual with a three-dimensional model. Ecological Modelling, 2021, 455, 109649.	2.5	0