Tim Schedl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209432/publications.pdf

Version: 2024-02-01

		57719	64755
86	7,622 citations	44	79
papers	citations	h-index	g-index
111	111	111	7506
111	111	111	7586
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reevaluation of the role of LIP-1 as an ERK/MPK-1 dual specificity phosphatase in the <i>C. elegans</i> germline. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
2	A dominant negative variant of <i>RAB5B</i> disrupts maturation of surfactant protein B and surfactant protein C. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
3	WormBase in 2022—data, processes, and tools for analyzing <i>Caenorhabditis elegans</i> . Genetics, 2022, 220, .	1.2	128
4	Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. Science Advances, 2022, 8, eabl8861.	4.7	5
5	Functional analysis of a novel de novo variant in PPP5C associated with microcephaly, seizures, and developmental delay. Molecular Genetics and Metabolism, 2022, 136, 65-73.	0.5	4
6	Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet Journal of Rare Diseases, 2021, 16, 206.	1.2	53
7	Functional analysis of a de novo variant in the neurodevelopment and generalized epilepsy disease gene NBEA. Molecular Genetics and Metabolism, 2021, 134, 195-202.	0.5	5
8	A simple one-step PCR assay for SNP detection. MicroPublication Biology, 2021, 2021, .	0.1	0
9	WormBase: a modern Model Organism Information Resource. Nucleic Acids Research, 2020, 48, D762-D767.	6.5	213
10	Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation. Molecular Cell, 2020, 80, 525-540.e9.	4.5	74
11	The NEMP family supports metazoan fertility and nuclear envelope stiffness. Science Advances, 2020, 6, eabb4591.	4.7	11
12	GLP-1 Notch—LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1. PLoS Genetics, 2020, 16, e1008650.	1.5	34
13	Role of GLD-3 in suppression of the germline stem cell fate. MicroPublication Biology, 2020, 2020, .	0.1	0
14	Comparison of the efficiency of TIR1 transgenes to provoke auxin induced LAG-1 degradation in germline stem cells. MicroPublication Biology, 2020, 2020, .	0.1	1
15	Rapid, population-wide declines in stem cell number and activity during reproductive aging in <i>C. elegans</i> . Development (Cambridge), 2019, 146, .	1.2	44
16	Biology of the <i>Caenorhabditis elegans</i> Germline Stem Cell System. Genetics, 2019, 213, 1145-1188.	1.2	94
17	WormBase 2017: molting into a new stage. Nucleic Acids Research, 2018, 46, D869-D874.	6.5	172
18	Cell Cycle Analysis in the C. elegans Germline with the Thymidine Analog EdU. Journal of Visualized Experiments, 2018, , .	0.2	17

#	Article	IF	CITATIONS
19	Micropublication: incentivizing community curation and placing unpublished data into the public domain. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	22
20	Cell cycle accumulation of the proliferating cell nuclear antigen PCN-1 transitions from continuous in the adult germline to intermittent in the early embryo of C. elegans. BMC Developmental Biology, 2018, 18, 12.	2.1	8
21	Initiation of Meiotic Development Is Controlled by Three Post-transcriptional Pathways in <i>Caenorhabditis elegans</i>	1.2	38
22	Caenorhabditis nomenclature. WormBook, 2018, 2018, 1-14.	5.3	13
23	Indirect Immunofluorescence of Proteins in Oogenic Germ Cells of Caenorhabditis elegans. Methods in Molecular Biology, 2016, 1457, 9-17.	0.4	1
24	Germline Stem Cell Differentiation Entails Regional Control of Cell Fate Regulator GLD-1 in <i>Caenorhabditis elegans</i>	1.2	53
25	WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Research, 2016, 44, D774-D780.	6.5	329
26	<i>Caenorhabditis elegans glp-4</i> Encodes a Valyl Aminoacyl tRNA Synthetase. G3: Genes, Genomes, Genetics, 2015, 5, 2719-2728.	0.8	25
27	Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation. Journal of Cell Science, 2015, 128, 2319-2329.	1.2	31
28	Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans. Genetics, 2015, 201, 167-184.	1.2	54
29	Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle, 2015, 14, 2959-2968.	1.3	80
30	Rab5a is required for spindle length control and kinetochoreâ€microtubule attachment during meiosis in oocytes. FASEB Journal, 2014, 28, 4026-4035.	0.2	30
31	WormBase 2014: new views of curated biology. Nucleic Acids Research, 2014, 42, D789-D793.	6.5	149
32	Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo. Nature Protocols, 2014, 9, 375-395.	5 . 5	21
33	Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB Journal, 2014, 28, 1435-1445.	0.2	96
34	Discovery of Anthelmintic Drug Targets and Drugs Using Chokepoints in Nematode Metabolic Pathways. PLoS Pathogens, 2013, 9, e1003505.	2.1	69
35	Introduction to Germ Cell Development in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 757, 1-16.	0.8	66
36	Stem Cell Proliferation Versus Meiotic Fate Decision in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 757, 71-99.	0.8	74

#	Article	IF	Citations
37	The 2012 Thomas Hunt Morgan Medal. Genetics, 2012, 191, 293-295.	1.2	O
38	High Fat Diet Induced Developmental Defects in the Mouse: Oocyte Meiotic Aneuploidy and Fetal Growth Retardation/Brain Defects. PLoS ONE, 2012, 7, e49217.	1.1	286
39	TEGâ€1 CD2BP2 regulates stem cell proliferation and sex determination in the <i>C. elegans</i> germ line and physically interacts with the UAFâ€1 U2AF65 splicing factor. Developmental Dynamics, 2012, 241, 505-521.	0.8	25
40	A High-Resolution C.Âelegans Essential Gene Network Based on Phenotypic Profiling of a Complex Tissue. Cell, 2011, 145, 470-482.	13.5	193
41	MPK-1 ERK Controls Membrane Organization in C.Âelegans Oogenesis via a Sex-Determination Module. Developmental Cell, 2011, 20, 677-688.	3.1	56
42	Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the <i>C. elegans</i> germline. Development (Cambridge), 2011, 138, 2223-2234.	1.2	142
43	Cellular Reprogramming: Chromatin Puts On the Brake. Current Biology, 2011, 21, R157-R159.	1.8	1
44	G3, GENETICS, and the GSA: Two Journals, One Mission. Genetics, 2011, 189, 1-2.	1.2	0
45	PRPâ€17 and the preâ€mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and germline sex determination in <i>Caenorhabditis elegans</i> Developmental Dynamics, 2010, 239, 1555-1572.	0.8	71
46	Publishing Interactive Articles: Integrating Journals And Biological Databases. Nature Precedings, $2010, , .$	0.1	0
47	EOR-2 Is an Obligate Binding Partner of the BTB–Zinc Finger Protein EOR-1 in <i>Caenorhabditis elegans</i> . Genetics, 2010, 184, 899-913.	1.2	17
48	C. Elegans Star Proteins, Gld-1 And Asd-2, Regulate Specific RNA Targets to Control Development. Advances in Experimental Medicine and Biology, 2010, 693, 106-122.	0.8	31
49	Mitochondrial Dysfunction and Apoptosis in Cumulus Cells of Type I Diabetic Mice. PLoS ONE, 2010, 5, e15901.	1.1	96
50	METT-10, A Putative Methyltransferase, Inhibits Germ Cell Proliferative Fate in <i>Caenorhabditis elegans</i> . Genetics, 2009, 183, 233-247.	1.2	33
51	Maternal Diabetes Causes Mitochondrial Dysfunction and Meiotic Defects in Murine Oocytes. Molecular Endocrinology, 2009, 23, 1603-1612.	3.7	182
52	The 2009 Genetics Society of America Elizabeth W. Jones Award for Excellence in Education. Genetics, 2009, 181, 835-836.	1.2	0
53	Multiple ERK substrates execute single biological processes in <i>Caenorhabditis elegans</i> germ-line development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4776-4781.	3.3	113
54	A Role for Dynein in the Inhibition of Germ Cell Proliferative Fate. Molecular and Cellular Biology, 2009, 29, 6128-6139.	1.1	30

#	Article	IF	CITATIONS
55	Using Next Generation Solexa Sequencing to Identify Genes that Regulate Stem Cell Proliferation in the Caenorhabditis elegans Germline. FASEB Journal, 2009, 23, 699.1.	0.2	O
56	Whole-genome sequencing and variant discovery in C. elegans. Nature Methods, 2008, 5, 183-188.	9.0	380
57	<i>Caenorhabditis elegans prom-$1 < l$i>Is Required for Meiotic Prophase Progression and Homologous Chromosome Pairing. Molecular Biology of the Cell, 2007, 18, 4911-4920.</i>	0.9	34
58	Multiple Functions and Dynamic Activation of MPK-1 Extracellular Signal-Regulated Kinase Signaling in <i>Caenorhabditis elegans</i> Germline Development. Genetics, 2007, 177, 2039-2062.	1.2	166
59	Sex determination in the germ linerevisedversioncorrectedfigure 1. WormBook, 2007, , 1-13.	5.3	58
60	The Regulatory Network Controlling the Proliferation–Meiotic Entry Decision in the Caenorhabditis elegans Germ Line. Current Topics in Developmental Biology, 2006, 76, 185-215.	1.0	69
61	Translational Repression of C. elegans p53 by GLD-1 Regulates DNA Damage-Induced Apoptosis. Cell, 2005, 120, 357-368.	13.5	195
62	Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development (Cambridge), 2004, 131, 93-104.	1.2	146
63	Epsin potentiates Notch pathway activity in Drosophilaand C. elegans. Development (Cambridge), 2004, 131, 5807-5815.	1.2	97
64	Translation repression by GLD-1 protects its mRNA targets from nonsense-mediated mRNA decay in C. elegans. Genes and Development, 2004, 18, 1047-1059.	2.7	83
65	fog-2 and the Evolution of Self-Fertile Hermaphroditism in Caenorhabditis. PLoS Biology, 2004, 3, e6.	2.6	106
66	Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Developmental Biology, 2004, 268, 342-357.	0.9	145
67	The Caenorhabditis elegans Skp1-Related Gene Family. Current Biology, 2002, 12, 277-287.	1.8	112
68	C. elegans ksr-1 and ksr-2 Have Both Unique and Redundant Functions and Are Required for MPK-1 ERK Phosphorylation. Current Biology, 2002, 12, 427-433.	1.8	116
69	<i>Caenorhabditis elegans lin-45 raf</i> Is Essential for Larval Viability, Fertility and the Induction of Vulval Cell Fates. Genetics, 2002, 160, 481-492.	1.2	45
70	The germline in C. elegans: Origins, proliferation, and silencing. International Review of Cytology, 2001, 203, 139-185.	6.2	90
71	Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes and Development, 2001, 15, 2408-2420.	2.7	159
72	A Sperm Cytoskeletal Protein That Signals Oocyte Meiotic Maturation and Ovulation. Science, 2001, 291, 2144-2147.	6.0	367

#	Article	IF	CITATIONS
73	CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration. Cell, 2001, 107, 27-41.	13.5	520
74	A <i>C. elegans </i> patched gene, <i>ptc-1 </i> , functions in germ-line cytokinesis. Genes and Development, 2000, 14, 1933-1944.	2.7	80
75	On the Control of Oocyte Meiotic Maturation and Ovulation inCaenorhabditis elegans. Developmental Biology, 1999, 205, 111-128.	0.9	451
76	Soma–Germ Cell Interactions inCaenorhabditis elegans:Multiple Events of Hermaphrodite Germline Development Require the Somatic Sheath and Spermathecal Lineages. Developmental Biology, 1997, 181, 121-143.	0.9	234
77	GLD-1, a Cytoplasmic Protein Essential for Oocyte Differentiation, Shows Stage- and Sex-Specific Expression duringCaenorhabditis elegansGermline Development. Developmental Biology, 1996, 180, 165-183.	0.9	264
78	Caenorhabditis Globin genes: Rapid intronic divergence contrasts with conservation of silent exonic sites. Journal of Molecular Evolution, 1996, 43, 101-108.	0.8	17
79	Somatic control of germ cell development in Caenorhabditis elegans. Seminars in Developmental Biology, 1994, 5, 21-30.	1.3	8
80	Moremog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Genesis, 1993, 14, 471-484.	3.3	82
81	The role of cell-cell interactions in postembryonic development of the Caenorhabditis elegans germ line. Current Opinion in Genetics and Development, 1991, 1, 185-190.	1.5	7
82	Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell, 1990, 61, 939-951.	13.5	84
83	A plasmodial α-tubulin cDNA from Physarum polycephalum. Journal of Molecular Biology, 1985, 183, 633-638.	2.0	28
84	GENETIC ANALYSIS OF RESISTANCE TO BENZIMIDAZOLES IN PHYSARUM: DIFFERENTIAL EXPRESSION OF \hat{l}^2 -TUBULIN GENES. Genetics, 1984, 108, 123-141.	1.2	64
85	GENETICS OF THE TUBULIN GENE FAMILIES OF PHYSARUM. Genetics, 1984, 108, 143-164.	1.2	45
86	Mendelian analysis of the organization of actin sequences in Physarum polycephalum. Journal of Molecular Biology, 1982, 160, 41-57.	2.0	60