
Stephen J W Busby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8209367/publications.pdf Version: 2024-02-01

STEDHEN I W RUSBY

#	Article	IF	CITATIONS
1	Inexpensive protein overexpression driven by the NarL transcription activator protein. Biotechnology and Bioengineering, 2022, 119, 1614-1623.	1.7	6
2	RNA polymerase spoiled for choice as transcription begins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110640118.	3.3	1
3	Antimicrobial Resistance and Comparative Genome Analysis of Klebsiella pneumoniae Strains Isolated in Egypt. Microorganisms, 2021, 9, 1880.	1.6	10
4	The PAR promoter expression system: Modified lac promoters for controlled recombinant protein production in Escherichia coli. New Biotechnology, 2021, 64, 1-8.	2.4	6
5	Antimicrobial resistance and gene regulation in Enteroaggregative Escherichia coli from Egyptian children with diarrhoea: Similarities and differences. Virulence, 2021, 12, 57-74.	1.8	13
6	Redefining fundamental concepts of transcription initiation in bacteria. Nature Reviews Genetics, 2020, 21, 699-714.	7.7	100
7	Activation by NarL at the <i>Escherichia coli ogt</i> promoter. Biochemical Journal, 2020, 477, 2807-2820.	1.7	7
8	Escherichia coli "TatExpress―strains export several g/L human growth hormone to the periplasm by the Tat pathway. Biotechnology and Bioengineering, 2019, 116, 3282-3291.	1.7	23
9	Oxygen and contact with human intestinal epithelium independently stimulate virulence gene expression in enteroaggregativeEscherichia coli. Cellular Microbiology, 2019, 21, e13012.	1.1	6
10	Position effects on promoter activity in Escherichia coli and their consequences for antibiotic-resistance determinants. Biochemical Society Transactions, 2019, 47, 839-845.	1.6	1
11	Bacterial Transcription Factors: Regulation by Pick "N―Mix. Journal of Molecular Biology, 2019, 431, 4067-4077.	2.0	56
12	DNA barcodes for rapid, whole genome, single-molecule analyses. Nucleic Acids Research, 2019, 47, e68-e68.	6.5	18
13	Exploitation of the <i>Escherichia coli lac</i> operon promoter for controlled recombinant protein production. Biochemical Society Transactions, 2019, 47, 755-763.	1.6	26
14	Organization and architecture of AggRâ€dependent promoters from enteroaggregative <i>Escherichia coli</i> . Molecular Microbiology, 2019, 111, 534-551.	1.2	10
15	Transcription activation in bacteria: ancient and modern. Microbiology (United Kingdom), 2019, 165, 386-395.	0.7	30
16	A unified resource for transcriptional regulation in Escherichia coli K-12 incorporating high-throughput-generated binding data into RegulonDB version 10.0. BMC Biology, 2018, 16, 91.	1.7	42
17	Regulation of <i>nrf</i> operon expression in pathogenic enteric bacteria: sequence divergence reveals new regulatory complexity. Molecular Microbiology, 2017, 104, 580-594.	1.2	8
18	<i>Escherichia coli</i> "TatExpress―strains superâ€secrete human growth hormone into the bacterial periplasm by the Tat pathway. Biotechnology and Bioengineering, 2017, 114, 2828-2836.	1.7	41

STEPHEN J W BUSBY

#	Article	IF	CITATIONS
19	Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12. BMC Microbiology, 2017, 17, 170.	1.3	4
20	The new bacteriology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150507.	1.8	0
21	RNA polymerase supply and flux through the <i>lac</i> operon in <i>Escherichia coli</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160080.	1.8	5
22	Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 2016, 14, 638-650.	13.6	401
23	Silencing of DNase Colicin E8 Gene Expression by a Complex Nucleoprotein Assembly Ensures Timely Colicin Induction. PLoS Genetics, 2015, 11, e1005354.	1.5	15
24	Evolution of bacterial transcription factors: how proteins take on new tasks, but do not always stop doing the old ones. Trends in Microbiology, 2015, 23, 463-467.	3.5	28
25	Expression of different bacterial cytotoxins is controlled by two global transcription factors, CRP and Fis, that co-operate in a shared-recruitment mechanism. Biochemical Journal, 2015, 466, 323-335.	1.7	19
26	Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Research, 2014, 42, 11383-11392.	6.5	227
27	Activating Transcription in Bacteria. Annual Review of Microbiology, 2012, 66, 125-152.	2.9	226
28	Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiology, 2009, 9, 252.	1.3	143
29	Competition between NarL-dependent activation and Fis-dependent repression controls expression from the <i>Escherichia coli yeaR</i> and <i>ogt</i> promoters. Biochemical Journal, 2009, 420, 249-257.	1.7	29
30	The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Research, 2008, 36, 3950-3955.	6.5	138
31	Transcription factor distribution in Escherichia coli : studies with FNR protein. Nucleic Acids Research, 2007, 35, 269-278.	6.5	264
32	Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Molecular Microbiology, 2007, 65, 21-26.	1.2	112
33	Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Research, 2006, 34, 4642-4652.	6.5	270
34	Extensive functional overlap between Ï f factors in Escherichia coli. Nature Structural and Molecular Biology, 2006, 13, 806-814.	3.6	163
35	Investigations of the modular structure of bacterial promoters. Biochemical Society Symposia, 2006, 73, 1-10.	2.7	35
36	Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17693-17698.	3.3	285

#	Article	IF	CITATIONS
37	Genomic Studies with Escherichia coli MelR Protein: Applications of Chromatin Immunoprecipitation and Microarrays. Journal of Bacteriology, 2004, 186, 6938-6943.	1.0	92
38	The regulation of bacterial transcription initiation. Nature Reviews Microbiology, 2004, 2, 57-65.	13.6	841