## Baiyan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/820921/publications.pdf Version: 2024-02-01



**BAIVAN** 

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. Nature Communications, 2014, 5, 5537.                                                                                                               | 12.8 | 481       |
| 2  | Applications of metal-organic frameworks featuring multi-functional sites. Coordination Chemistry Reviews, 2016, 307, 106-129.                                                                                                                  | 18.8 | 471       |
| 3  | Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO <sub>2</sub> by Dual<br>Functionalization of a <i>rht</i> â€Type Metal–Organic Framework. Angewandte Chemie - International<br>Edition, 2012, 51, 1412-1415.         | 13.8 | 430       |
| 4  | Introduction of ï€-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. Journal of the American Chemical Society, 2014, 136, 8654-8660.                                                         | 13.7 | 383       |
| 5  | A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chemical Communications, 2013, 49, 8964.                                                                          | 4.1  | 335       |
| 6  | Metal–Organic Framework Based upon the Synergy of a BrÃ,nsted Acid Framework and Lewis Acid<br>Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American<br>Chemical Society, 2015, 137, 4243-4248. | 13.7 | 242       |
| 7  | Functionalized Porous Aromatic Framework for Efficient Uranium Adsorption from Aqueous<br>Solutions. ACS Applied Materials & Interfaces, 2017, 9, 12511-12517.                                                                                  | 8.0  | 215       |
| 8  | A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 2012, 48, 6151.                                     | 4.1  | 204       |
| 9  | Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO <sub>2</sub> under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 2015, 3, 23136-23142.          | 10.3 | 175       |
| 10 | Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps.<br>Nature Communications, 2017, 8, 485.                                                                                                         | 12.8 | 171       |
| 11 | Metal-Cation-Directed <i>de Novo</i> Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 1202-1205.                                                 | 13.7 | 168       |
| 12 | Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. Chemical Communications, 2015, 51, 2714-2717.                                                                     | 4.1  | 151       |
| 13 | An N-rich metal–organic framework with an rht topology: high CO2 and C2 hydrocarbons uptake and selective capture from CH4. Chemical Communications, 2014, 50, 5031.                                                                            | 4.1  | 137       |
| 14 | Removal of Pertechnetateâ€Related Oxyanions from Solution Using Functionalized Hierarchical Porous<br>Frameworks. Chemistry - A European Journal, 2016, 22, 17581-17584.                                                                        | 3.3  | 107       |
| 15 | Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis. Chemical Communications, 2014, 50, 8507.                                                                                            | 4.1  | 105       |
| 16 | High storage capacity and separation selectivity for C <sub>2</sub> hydrocarbons over methane in the metal–organic framework Cu–TDPAT. Journal of Materials Chemistry A, 2014, 2, 15823-15828.                                                  | 10.3 | 102       |
| 17 | Design Strategies to Enhance Amidoxime Chelators for Uranium Recovery. ACS Applied Materials &<br>Interfaces, 2019, 11, 30919-30926.                                                                                                            | 8.0  | 91        |
| 18 | Chemically Stable Guanidinium Covalent Organic Framework for the Efficient Capture of<br>Low-Concentration Iodine at High Temperatures. Journal of the American Chemical Society, 2022, 144,<br>6821-6829.                                      | 13.7 | 89        |

Baiyan Li

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Multifunctional Luminescent Porous Organic Polymer for Selectively Detecting Iron Ions and<br>1,4-Dioxane via Luminescent Turn-off and Turn-on Sensing. ACS Applied Materials & Interfaces, 2016,<br>8, 24097-24103.                                                             | 8.0  | 78        |
| 20 | A new microporous carbon material synthesized via thermolysis of a porous aromatic framework<br>embedded with an extra carbon source for low-pressure CO2 uptake. Chemical Communications, 2013,<br>49, 10269.                                                                   | 4.1  | 76        |
| 21 | Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment. Chemical Science, 2016, 7, 2138-2144.                                                                                          | 7.4  | 72        |
| 22 | Cu-TDPAT, an <i>rht</i> -Type Dual-Functional Metal–Organic Framework Offering Significant<br>Potential for Use in H <sub>2</sub> and Natural Gas Purification Processes Operating at High<br>Pressures. Journal of Physical Chemistry C, 2012, 116, 16609-16618.                | 3.1  | 68        |
| 23 | Dual Functionalized Cages in Metal–Organic Frameworks via Stepwise Postsynthetic Modification.<br>Chemistry of Materials, 2016, 28, 4781-4786.                                                                                                                                   | 6.7  | 55        |
| 24 | Design and Construction of Coordination Polymers by 4-Amino-3,5-bis( <i>n</i> -pyridyl)-1,2,4-triazole<br>( <i>n</i> = 2, 3, 4) Isomers in a Copper(I) Halide System: Diverse Structures Tuned by Isomeric and Anion<br>Effects. Crystal Growth and Design, 2010, 10, 2192-2201. | 3.0  | 53        |
| 25 | Coordination polymers constructed by 1,3-bi(4-pyridyl)propane with four different conformations and 2,2′-dinitro-4,4′-biphenyldicarboxylate ligands: the effects of metal ions. CrystEngComm, 2011, 13, 1291-1298.                                                               | 2.6  | 51        |
| 26 | Recent Advances on Metalâ€Organic Frameworks in the Conversion of Carbon Dioxide. Chinese Journal of Chemistry, 2021, 39, 440-462.                                                                                                                                               | 4.9  | 51        |
| 27 | Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nature Communications, 2022, 13, 2132.                                                                                                                   | 12.8 | 49        |
| 28 | Interconnected CoS2/NC-CNTs network as high-performance anode materials for lithium-ion batteries.<br>Science China Materials, 2021, 64, 820-829.                                                                                                                                | 6.3  | 47        |
| 29 | Two Metal–Organic Frameworks Constructed from One-Dimensional Cobalt(II) Ferrimagnetic Chains<br>with Alternating Antiferromagnetic/Ferromagnetic and AF/AF/FM Interaction: Synthesis, Structures,<br>and Magnetic Properties. Inorganic Chemistry, 2012, 51, 6813-6820.         | 4.0  | 45        |
| 30 | Construction of Coordination Polymers Based on Bent 4-Amino-3,5-bis(3-carboxyphenyl)-1,2,4-triazole<br>Ligand: Diverse Structural Topology and Photoluminescent and Magnetic Properties. Crystal Growth<br>and Design, 2011, 11, 1475-1485.                                      | 3.0  | 41        |
| 31 | Design and construction of coordination polymers based on 2,2′-dinitro-4,4′-biphenyldicarboxylate and imidazole-based ligands: The effect of ligand length and metal ions. CrystEngComm, 2011, 13, 4592.                                                                         | 2.6  | 40        |
| 32 | Multi-functional sites catalysts based on post-synthetic modification of metal-organic frameworks.<br>Chinese Chemical Letters, 2018, 29, 827-830.                                                                                                                               | 9.0  | 39        |
| 33 | Functionalized metal organic frameworks for effective capture of radioactive organic iodides.<br>Faraday Discussions, 2017, 201, 47-61.                                                                                                                                          | 3.2  | 38        |
| 34 | Di-ionic multifunctional porous organic frameworks for efficient CO <sub>2</sub> fixation under mild and co-catalyst free conditions. Green Chemistry, 2018, 20, 5285-5291.                                                                                                      | 9.0  | 38        |
| 35 | Synthesis, structures and luminescent properties of cadmium(ii) metal organic frameworks based on<br>3-pyrid-4-ylbenzoic acid, 4-pyrid-4-ylbenzoic acid ligands. CrystEngComm, 2012, 14, 4664.                                                                                   | 2.6  | 37        |
| 36 | A microporous yttrium metal–organic framework of an unusual nia topology for high adsorption<br>selectivity of C <sub>2</sub> H <sub>2</sub> and CO <sub>2</sub> over CH <sub>4</sub> at room<br>temperature. Materials Chemistry Frontiers, 2017, 1, 1982-1988.                 | 5.9  | 35        |

Baiyan Li

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | From an equilibrium based MOF adsorbent to a kinetic selective carbon molecular sieve for paraffin/iso-paraffin separation. Chemical Communications, 2016, 52, 13897-13900.                                            | 4.1 | 34        |
| 38 | Recent Progress in <scp>Metalâ€Organic</scp> Frameworks@Cellulose Hybrids and Their Applications.<br>Chinese Journal of Chemistry, 2021, 39, 3462-3480.                                                                | 4.9 | 34        |
| 39 | Design and construction of coordination polymers based on 2,2′-dinitro-4,4′-biphenyldicarboxylate and semi-rigid N-donor ligands: diverse structures and magnetic properties. Dalton Transactions, 2012, 41, 2677.     | 3.3 | 29        |
| 40 | Metal-organic frameworks loaded on phosphorus-doped tubular carbon nitride for enhanced<br>photocatalytic hydrogen production and amine oxidation. Journal of Colloid and Interface Science,<br>2021, 590, 1-11.       | 9.4 | 28        |
| 41 | Design and construction of coordination polymers by 2,2′-dinitro-4,4′-biphenyldicarboxylate and<br>imidazole-based ligands: diverse structures based on different metal ions. CrystEngComm, 2011, 13,<br>2457.         | 2.6 | 26        |
| 42 | Carboxylate-modified squaraine dye doped silica fluorescent pH nanosensors. Nanotechnology, 2010,<br>21, 215502.                                                                                                       | 2.6 | 20        |
| 43 | Two Coordination Polymers with Rare Topologies Based on Copper(II) and Ligands Generated by In Situ<br>Reactions. European Journal of Inorganic Chemistry, 2011, 2011, 35-38.                                          | 2.0 | 13        |
| 44 | Creating extra pores in microporous carbon via a template strategy for a remarkable enhancement of ambient-pressure CO2uptake. Chemical Communications, 2015, 51, 8683-8686.                                           | 4.1 | 11        |
| 45 | Two three-dimensional metal–organic frameworks constructed by thiazole-spaced<br>pyridinecarboxylates exhibiting selective gas sorption or antiferromagnetic coupling. New Journal of<br>Chemistry, 2013, 37, 425-430. | 2.8 | 10        |
| 46 | Energy related ion transports in coordination polymers. Nano Select, 0, , .                                                                                                                                            | 3.7 | 6         |