
Hideki Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208758/publications.pdf Version: 2024-02-01

ΗΙΠΕΚΙ ΤΛΝΛΚΛ

#	Article	IF	CITATIONS
1	Novel Expansion/Shrinkage Modulation of 2D Layered MOF Triggered by Clathrate Formation with CO2Molecules. Nano Letters, 2006, 6, 2581-2584.	9.1	254
2	Quantum Effects on Hydrogen Isotope Adsorption on Single-Wall Carbon Nanohorns. Journal of the American Chemical Society, 2005, 127, 7511-7516.	13.7	189
3	Elastic layer-structured metal organic frameworks (ELMs). Journal of Colloid and Interface Science, 2009, 334, 1-7.	9.4	104
4	Storage of Hydrogen at 303 K in Graphite Slitlike Pores from Grand Canonical Monte Carlo Simulation. Journal of Physical Chemistry B, 2005, 109, 17174-17183.	2.6	101
5	High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities. Nature Communications, 2020, 11, 3867.	12.8	99
6	Confinement in Carbon Nanospace-Induced Production of KI Nanocrystals of High-Pressure Phase. Journal of the American Chemical Society, 2011, 133, 10344-10347.	13.7	86
7	Adsorption-Induced Structural Transition of ZIF-8: A Combined Experimental and Simulation Study. Journal of Physical Chemistry C, 2014, 118, 8445-8454.	3.1	84
8	Grand Canonical Monte Carlo Simulation Study of Methane Adsorption at an Open Graphite Surface and in Slitlike Carbon Pores at 273 K. Langmuir, 2005, 21, 5639-5646.	3.5	83
9	Quantum Effects on Hydrogen Adsorption in Internal Nanospaces of Single-Wall Carbon Nanohorns. Journal of Physical Chemistry B, 2004, 108, 17457-17465.	2.6	75
10	Synthesis of zeolitic imidazolate framework-8 particles of controlled sizes, shapes, and gate adsorption characteristics using a central collision-type microreactor. Chemical Engineering Journal, 2017, 313, 724-733.	12.7	72
11	Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels. Carbon, 2018, 129, 854-862.	10.3	70
12	Intrinsic Thermal Management Capabilities of Flexible Metal–Organic Frameworks for Carbon Dioxide Separation and Capture. ACS Applied Materials & Interfaces, 2017, 9, 41066-41077.	8.0	61
13	Free energy analysis for adsorption-induced lattice transition of flexible coordination framework. Journal of Chemical Physics, 2009, 130, 164707.	3.0	57
14	Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges. Nature Communications, 2019, 10, 2559.	12.8	46
15	Simulation study for adsorption-induced structural transition in stacked-layer porous coordination polymers: Equilibrium and hysteretic adsorption behaviors. Journal of Chemical Physics, 2013, 138, 054708.	3.0	45
16	Understanding gate adsorption behaviour of CO ₂ on elastic layer-structured metal–organic framework-11. Dalton Transactions, 2016, 45, 4193-4202.	3.3	43
17	Modeling and Visualization of CO ₂ Adsorption on Elastic Layer-Structured Metal–Organic Framework-11: Toward a Better Understanding of Gate Adsorption Behavior. Journal of Physical Chemistry C, 2015, 119, 11533-11543.	3.1	41
18	Quantum Effects on Hydrogen Isotopes Adsorption inÂNanopores. Journal of Low Temperature Physics, 2009, 157, 352-373.	1.4	38

HIDEKI TANAKA

#	Article	IF	CITATIONS
19	Anomaly of CH ₄ Molecular Assembly Confined in Single-Wall Carbon Nanohorn Spaces. Journal of the American Chemical Society, 2011, 133, 2022-2024.	13.7	33
20	Quantum Molecular Sieving Effects of H ₂ and D ₂ on Bundled and Nonbundled Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 20918-20922.	3.1	31
21	Reversible Pore Size Control of Elastic Microporous Material by Mechanical Force. Chemistry - A European Journal, 2013, 19, 13009-13016.	3.3	23
22	Fluids in nanospaces: molecular simulation studies to find out key mechanisms for engineering. Adsorption, 2014, 20, 213-223.	3.0	23
23	Selective molecular-gating adsorption in a novel copper-based metal–organic framework. Journal of Materials Chemistry A, 2018, 6, 5910-5918.	10.3	23
24	Structural mechanism of reactivation with steam of pitch-based activated carbon fibers. Journal of Colloid and Interface Science, 2020, 578, 422-430.	9.4	22
25	Ultrapermeable 2D-channeled graphene-wrapped zeolite molecular sieving membranes for hydrogen separation. Science Advances, 2022, 8, eabl3521.	10.3	21
26	Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach. ACS Nano, 2017, 11, 269-276.	14.6	20
27	Fast continuous measurement of synchrotron powder diffraction synchronized with controlling gas and vapour pressures at beamline BL02B2 ofÂSPring-8. Journal of Synchrotron Radiation, 2020, 27, 616-624.	2.4	20
28	Dependence of adsorption-induced structural transition on framework structure of porous coordination polymers. Journal of Chemical Physics, 2014, 140, 044707.	3.0	19
29	Capillary condensation in mesoporous silica with surface roughness. Adsorption, 2013, 19, 631-641.	3.0	18
30	Adsorption separation of heavier isotope gases in subnanometer carbon pores. Nature Communications, 2021, 12, 546.	12.8	18
31	A flexible two-dimensional layered metal–organic framework functionalized with (trifluoromethyl)trifluoroborate: synthesis, crystal structure, and adsorption/separation properties. Dalton Transactions, 2020, 49, 3692-3699.	3.3	17
32	High-density monolithic pellets of double-sided graphene fragments based on zeolite-templated carbon. Journal of Materials Chemistry A, 2021, 9, 7503-7507.	10.3	17
33	New approach to determination of surface heterogeneity of adsorbents and catalysts from the temperature programmed desorption (TPD) technique: One step beyond the condensation approximation (CA) method. Journal of Colloid and Interface Science, 2005, 291, 334-344.	9.4	16
34	Structural adsorption mechanism of chloroform in narrow micropores of pitch-based activated carbon fibres. Carbon, 2021, 171, 681-688.	10.3	16
35	Critical energy barrier for capillary condensation in mesopores: Hysteresis and reversibility. Journal of Chemical Physics, 2016, 144, 164705.	3.0	15
36	Free energy calculations for adsorption-induced deformation of flexible metal–organic frameworks. Current Opinion in Chemical Engineering, 2019, 24, 19-25.	7.8	15

HIDEKI TANAKA

#	Article	IF	CITATIONS
37	The subtracting pore effect method for an accurate and reliable surface area determination of porous carbons. Carbon, 2021, 175, 77-86.	10.3	15
38	Comprehensive Modeling of Capillary Condensation in Open-Ended Nanopores: Equilibrium, Metastability, and Spinodal. Journal of Physical Chemistry C, 2017, 121, 26877-26886.	3.1	13
39	Highly Crystalline Ni–Co Layered Double Hydroxide Fabricated via Topochemical Transformation with a High Adsorption Capacity for Nitrate Ions. Inorganic Chemistry, 2019, 58, 15710-15719.	4.0	13
40	Determination of phase equilibria in confined systems by open pore cell Monte Carlo method. Journal of Chemical Physics, 2013, 138, 084709.	3.0	12
41	Free Energy Analysis for Adsorption-Induced Structural Transition of Colloidal Zeolitic Imidazolate Framework-8 Particles. Journal of Physical Chemistry C, 2017, 121, 20366-20374.	3.1	12
42	In silico synthesis of carbon molecular sieves for high-performance air separation. Carbon, 2019, 141, 626-634.	10.3	11
43	The Long and Bright Path of a Lanthanide MOF: From Basics towards the Application. Chemistry - A European Journal, 2021, 27, 7376-7382.	3.3	10
44	Slacking of Gate Adsorption Behavior on Metal–Organic Frameworks under an External Force. ACS Applied Materials & Interfaces, 2021, 13, 30213-30223.	8.0	10
45	CHF ₃ –CHClF ₂ Binary Competitive Adsorption Equilibria in Graphitic Slit Pores: Monte Carlo Simulations and Breakthrough Curve Experiments. Industrial & Engineering Chemistry Research, 2018, 57, 6440-6450.	3.7	8
46	Efficiency of Thermal Management Using Phase-Change Material for Nonisothermal Adsorption Process. Industrial & Engineering Chemistry Research, 2020, 59, 14485-14495.	3.7	8
47	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie - International Edition, 2021, 60, 20504-20510.	13.8	8
48	Hydrogen Isotope Separation in Carbon Nanopores. Journal of Chemical Engineering of Japan, 2011, 44, 355-363.	0.6	6
49	Potential theory for gate adsorption on soft porous crystals. Molecular Simulation, 2015, 41, 1329-1338.	2.0	6
50	High-Performance Carbon Molecular Sieves for the Separation of Propylene and Propane. ACS Applied Materials & Interfaces, 2022, 14, 17878-17888.	8.0	5
51	Low-temperature hydrogen-graphite system revisited: Experimental study and Monte Carlo simulation. Journal of Chemical Physics, 2019, 151, 024704.	3.0	4
52	Highly oxidation-resistant graphene-based porous carbon as a metal catalyst support. Carbon Trends, 2021, 3, 100029.	3.0	4
53	Synthesis of zeolite-templated carbons for methane storage: A molecular simulation study. Tanso, 2018, 2018, 197-203.	0.1	4
54	Central metal dependent modulation of induced-fit gas uptake in molecular porphyrin solids. Chemical Communications, 2018, 54, 7822-7825.	4.1	2

Hideki Tanaka

#	Article	IF	CITATIONS
55	What is the Smallest Atom as a Probe for Characterizing Nanostructures?. Journal of Physical Chemistry C, 2018, 122, 15446-15455.	3.1	2
56	Diffusion phenomena of propane and propylene in colloidal zeolitic imidazolate Framework-8 particles. Journal of the Taiwan Institute of Chemical Engineers, 2018, 90, 79-84.	5.3	1
57	CO2 Storage on Metal-Organic Frameworks. Green Energy and Technology, 2019, , 331-358.	0.6	1
58	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie, 2021, 133, 20667-20673.	2.0	1
59	Enhancement in the Charge-Transfer Kinetics of Pseudocapacitive Iridium-Doped Layered Manganese Oxide. Inorganic Chemistry, 2022, 61, 4566-4571.	4.0	1
60	Liquid exfoliation of five-coordinate layered titanate K ₂ Ti ₂ O ₅ single crystals in water. CrystEngComm, 2022, 24, 5112-5119.	2.6	1
61	Apatite–Graphene Interface Channel-Aided Rapid and Selective H ₂ Permeation. Journal of Physical Chemistry C, 2022, 126, 3653-3660.	3.1	0