Om Prakash Singh, MPhil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208699/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Domestic mammals as reservoirs for <i>Leishmania donovani</i> on the Indian subcontinent: Possibility and consequences on elimination. Transboundary and Emerging Diseases, 2022, 69, 268-277.	1.3	18
2	Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. International Journal of Biological Macromolecules, 2022, 204, 373-385.	3.6	15
3	Diagnosis of Visceral Leishmaniasis in an Elimination Setting: A Validation Study of the Diagnostic Algorithm in India. Diagnostics, 2022, 12, 670.	1.3	4
4	Increased amphiregulin expression by CD4 ⁺ T cells from individuals with asymptomatic <i>Leishmania donovani</i> infection. Clinical and Translational Immunology, 2022, 11, .	1.7	5
5	Anti–Interleukin-10 Unleashes Transcriptional Response to Leishmanial Antigens in Visceral Leishmaniasis Patients. Journal of Infectious Diseases, 2021, 223, 517-521.	1.9	5
6	IFN-γ+ CD4+T cell-driven prophylactic potential of recombinant LDBPK_252400 hypothetical protein of Leishmania donovani against visceral leishmaniasis. Cellular Immunology, 2021, 361, 104272.	1.4	6
7	Nanodiagnostics in leishmaniasis: A new frontiers for early elimination. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1675.	3.3	12
8	Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India: a transmission-dynamics study. Lancet Microbe, The, 2021, 2, e23-e31.	3.4	54
9	Assessing L. donovani Skin Parasite Load: A Proof of Concept Study of a Microbiopsy Device in an Indian Setting. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645121.	1.8	5
10	Utility of Blood as the Clinical Specimen for the Molecular Diagnosis of Post-Kala-Azar Dermal Leishmaniasis. Journal of Clinical Microbiology, 2021, 59, e0013221.	1.8	5
11	Coalition of Biological Agent (Melatonin) With Chemotherapeutic Agent (Amphotericin B) for Combating Visceral Leishmaniasis via Oral Administration of Modified Solid Lipid Nanoparticles. ACS Biomaterials Science and Engineering, 2021, , .	2.6	9
12	The healing potential of Draksha-guduchyadi kavala in radiotherapy induced oral mucositis in non-metastatic squamous cell carcinoma of head and neck: A comparative case study. Journal of Ayurveda and Integrative Medicine, 2021, 13, 100524.	0.9	0
13	An Insight Into Systemic Immune Response in Leishmania donovani Mediated Atypical Cutaneous Leishmaniasis in the New Endemic State of Himachal Pradesh, India. Frontiers in Immunology, 2021, 12, 765684.	2.2	1
14	Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate. Materials Science and Engineering C, 2020, 117, 111279.	3.8	34
15	Recuperating Biopharmaceutical Aspects of Amphotericin B and Paromomycin Using a Chitosan Functionalized Nanocarrier via Oral Route for Enhanced Anti-leishmanial Activity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 570573.	1.8	20
16	Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Scientific Reports, 2020, 10, 12243.	1.6	73
17	Sensible graphene oxide differentiates macrophages and <i>Leishmania</i> : a bio-nano interplay in attenuating intracellular parasite. RSC Advances, 2020, 10, 27502-27511.	1.7	7
18	Xenodiagnosis to address key questions in visceral leishmaniasis control and elimination. PLoS Neglected Tropical Diseases, 2020, 14, e0008363.	1.3	21

#	Article	IF	CITATIONS
19	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
20	Isolation and characterisation of Leishmania donovani protein antigens from urine of visceral leishmaniasis patients. PLoS ONE, 2020, 15, e0238840.	1.1	4
21	Genetics, Transcriptomics and Meta-Taxonomics in Visceral Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 590888.	1.8	6
22	Post kala-azar dermal leishmaniasis: A threat to elimination program. PLoS Neglected Tropical Diseases, 2020, 14, e0008221.	1.3	42
23	Evaluation of Safety and Antileishmanial Efficacy of Amine Functionalized Carbon-Based Composite Nanoparticle Appended With Amphotericin B: An in vitro and Preclinical Study. Frontiers in Chemistry, 2020, 8, 510.	1.8	18
24	Improvising anti-leishmanial activity of amphotericin B and paromomycin using co-delivery in d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) tailored nano-lipid carrier system. Chemistry and Physics of Lipids, 2020, 231, 104946.	1.5	14
25	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	2.9	34
26	Transcriptional blood signatures for active and amphotericin B treated visceral leishmaniasis in India. PLoS Neglected Tropical Diseases, 2019, 13, e0007673.	1.3	16
27	Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: for future theranostic application. Nanomedicine, 2019, 14, 1911-1927.	1.7	27
28	Post kala azar dermal leishmaniasis and leprosy prevalence and distribution in the Muzaffarpur health and demographic surveillance site. PLoS Neglected Tropical Diseases, 2019, 13, e0007798.	1.3	12
29	A molecular signature for CD8 ⁺ T cells from visceral leishmaniasis patients. Parasite Immunology, 2019, 41, e12669.	0.7	12
30	Meta-taxonomic analysis of prokaryotic and eukaryotic gut flora in stool samples from visceral leishmaniasis cases and endemic controls in Bihar State India. PLoS Neglected Tropical Diseases, 2019, 13, e0007444.	1.3	37
31	Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007353.	1.3	16
32	Therapeutic Leishmaniasis: Recent Advancement and Developments in Nanomedicines. , 2019, , 195-220.		6
33	Determinants for progression from asymptomatic infection to symptomatic visceral leishmaniasis: A cohort study. PLoS Neglected Tropical Diseases, 2019, 13, e0007216.	1.3	36
34	Interleukin 2 is an Upstream Regulator of CD4+ T Cells From Visceral Leishmaniasis Patients With Therapeutic Potential. Journal of Infectious Diseases, 2019, 220, 163-173.	1.9	8
35	Development of a biomarker of efficacy in second-line treatment for lymphangioma of the tongue: a pilot study. British Journal of Oral and Maxillofacial Surgery, 2019, 57, 1137-1142.	0.4	5
36	Leishmania donovani evades Caspase 1 dependent host defense mechanism during infection. International Journal of Biological Macromolecules, 2019, 126, 392-401.	3.6	13

#	Article	IF	CITATIONS
37	Detection of Immunoglobulin G1 Against rK39 Improves Monitoring of Treatment Outcomes in Visceral Leishmaniasis. Clinical Infectious Diseases, 2019, 69, 1130-1135.	2.9	19
38	Abnormal B-Cell Subset and Blimp-1–Mediated Humoral Responses Associated With Visceral Leishmaniasis Pathogenesis. American Journal of Tropical Medicine and Hygiene, 2019, 100, 816-821.	0.6	4
39	Title is missing!. , 2019, 13, e0007798.		0
40	Title is missing!. , 2019, 13, e0007798.		0
41	Title is missing!. , 2019, 13, e0007798.		0
42	Title is missing!. , 2019, 13, e0007798.		0
43	Validation of SYBR green I based closed tube loop mediated isothermal amplification (LAMP) assay and simplified direct-blood-lysis (DBL)-LAMP assay for diagnosis of visceral leishmaniasis (VL). PLoS Neglected Tropical Diseases, 2018, 12, e0006922.	1.3	37
44	Visceral Leishmaniasis IgG1 Rapid Monitoring of Cure vs. Relapse, and Potential for Diagnosis of Post Kala-Azar Dermal Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2018, 8, 427.	1.8	24
45	Visceral leishmaniasis: Spatiotemporal heterogeneity and drivers underlying the hotspots in Muzaffarpur, Bihar, India. PLoS Neglected Tropical Diseases, 2018, 12, e0006888.	1.3	25
46	Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Review of Anti-Infective Therapy, 2018, 16, 805-812.	2.0	58
47	Automatic Quantitative Analysis of Human Respired Carbon Dioxide Waveform for Asthma and Non-Asthma Classification Using Support Vector Machine. IEEE Access, 2018, 6, 55245-55256.	2.6	20
48	Molecular Diagnosis of Visceral Leishmaniasis. Molecular Diagnosis and Therapy, 2018, 22, 443-457.	1.6	88
49	Visceral Leishmaniasis in the Muzaffapur Demographic Surveillance Site: A Spatiotemporal Analysis. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1555-1561.	0.6	9
50	Establishing, Expanding, and Certifying a Closed Colony of Phlebotomus argentipes (Diptera:) Tj ETQq0 0 0 rgBT Bihar, India. Journal of Medical Entomology, 2017, 54, 1129-1139.	/Overlock 0.9	10 Tf 50 227 16
51	Elimination of visceral leishmaniasis on the Indian subcontinent. Lancet Infectious Diseases, The, 2016, 16, e304-e309.	4.6	98
52	Global, regional, and national levels of maternal mortality, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1775-1812.	6.3	740
53	Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1459-1544.	6.3	4,934
54	Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, The, 2016, 388, 1725-1774.	6.3	571

#	Article	IF	CITATIONS
55	Novel Antigen Detection Assay to Monitor Therapeutic Efficacy of Visceral Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2016, 95, 800-802.	0.6	12
56	Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infectious Diseases of Poverty, 2016, 5, 19.	1.5	137
57	Developments in Diagnosis of Visceral Leishmaniasis in the Elimination Era. Journal of Parasitology Research, 2015, 2015, 1-10.	0.5	76
58	Significantly Lower Anti-Leishmania IgG Responses in Sudanese versus Indian Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e2675.	1.3	40
59	Leishmania Specific CD4 T Cells Release IFNÎ ³ That Limits Parasite Replication in Patients with Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e3198.	1.3	63
60	Strong Association between Serological Status and Probability of Progression to Clinical Visceral Leishmaniasis in Prospective Cohort Studies in India and Nepal. PLoS Neglected Tropical Diseases, 2014, 8, e2657.	1.3	69
61	lgG1 as a Potential Biomarker of Post-chemotherapeutic Relapse in Visceral Leishmaniasis, and Adaptation to a Rapid Diagnostic Test. PLoS Neglected Tropical Diseases, 2014, 8, e3273.	1.3	48
62	Immunotherapy and Targeted Therapies in Treatment of Visceral Leishmaniasis: Current Status and Future Prospects. Frontiers in Immunology, 2014, 5, 296.	2.2	82
63	Strategies to Overcome Antileishmanial Drugs Unresponsiveness. Journal of Tropical Medicine, 2014, 2014, 1-7.	0.6	41
64	Asymptomatic Leishmania Infection: A New Challenge for Leishmania Control. Clinical Infectious Diseases, 2014, 58, 1424-1429.	2.9	154
65	Whole blood assay and visceral leishmaniasis: Challenges and promises. Immunobiology, 2014, 219, 323-328.	0.8	21
66	Enhanced expression of Tollâ€like receptors 2 and 4, but not 9, in spleen tissue from patients with visceral leishmaniasis. Parasite Immunology, 2014, 36, 721-725.	0.7	15
67	Cytokine Responses to Novel Antigens in an Indian Population Living in an Area Endemic for Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2012, 6, e1874.	1.3	56
68	rK39 Antigen for the Diagnosis of Visceral Leishmaniasis by Using Human Saliva. American Journal of Tropical Medicine and Hygiene, 2012, 86, 598-600.	0.6	17
69	Reassessment of Immune Correlates in Human Visceral Leishmaniasis as Defined by Cytokine Release in Whole Blood. Vaccine Journal, 2012, 19, 961-966.	3.2	92
70	Analysis of Total Urine Proteins: Towards a Non-Invasive Approach for Diagnosis of Visceral Leishmaniasis. Journal of Molecular Biomarkers & Diagnosis, 2012, 03, .	0.4	6
71	IL-27 and IL-21 Are Associated with T Cell IL-10 Responses in Human Visceral Leishmaniasis. Journal of Immunology, 2011, 186, 3977-3985.	0.4	130