Shinjiro Umezu, æ¢æ.′¥ã€€ä¿¡äºŒé**Ž**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208548/publications.pdf

Version: 2024-02-01

91 1,308 19
papers citations h-ind

92

all docs

citations h-index g-index

92 92 1968
docs citations times ranked citing authors

425179

34

#	Article	IF	CITATIONS
1	Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions. Advanced Materials, 2022, 34, e2107758.	11.1	75
2	3D-printed swab with cover for precision diagnosis. Journal of Materials Science: Materials in Medicine, 2022, 33, 8.	1.7	2
3	Cell-Based Microfluidic Device Utilizing Cell Sheet Technology. Cyborg and Bionic Systems, 2022, 2022,	3.7	5
4	Electro-spray deposited TiO2 bilayer films and their recyclable photocatalytic self-cleaning strategy. Scientific Reports, 2022, 12, 1582.	1.6	3
5	Smart Face Mask Based on an Ultrathin Pressure Sensor for Wireless Monitoring of Breath Conditions (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	11.1	4
6	Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells. Nano-Micro Letters, 2021, 13, 36.	14.4	50
7	Simultaneous measurement of contractile force and field potential of dynamically beating human iPS cell-derived cardiac cell sheet-tissue with flexible electronics. Lab on A Chip, 2021, 21, 3899-3909.	3.1	9
8	Remote radio control of insect flight reveals why beetles lift their legs in flight while other insects tightly fold. Bioinspiration and Biomimetics, 2021, 16, 036001.	1.5	8
9	New cost effective design of PCR heating cycler system using Peltier plate without the conventional heating block. Journal of Mechanical Science and Technology, 2021, 35, 3259-3268.	0.7	17
10	An organic transistor matrix for multipoint intracellular action potential recording. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	15
11	Photoactive layer formation in the dark for high performance of air-processable organic photovoltaics. JPhys Materials, 2021, 4, 044016.	1.8	4
12	Low-temperature treated anatase TiO2 nanophotonic-structured contact design for efficient triple-cation perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131831.	6.6	22
13	Best of both worlds: A novel, environment-friendly approach to 3D printing metal–plastic hybrid structures. Reinforced Plastics, 2021, 65, 53-55.	0.5	5
14	Smooth and slipless walking mechanism inspired by the open–close cycle of a beetle claw. Bioinspiration and Biomimetics, 2021, 16, 016011.	1.5	10
15	Paste Aging Spontaneously Tunes TiO ₂ Nanoparticles into Reproducible Electrosprayed Photoelectrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53758-53766.	4.0	3
16	Direct gold bonding for flexible integrated electronics. Science Advances, 2021, 7, eabl6228.	4.7	25
17	Metal-plastic hybrid 3D printing using catalyst-loaded filament and electroless plating. Additive Manufacturing, 2020, 36, 101556.	1.7	22
18	A high quality surface finish grinding process to produce total reflection mirror for x-ray fluorescence analysis. International Journal of Extreme Manufacturing, 2020, 2, 015101.	6.3	13

#	Article	IF	CITATIONS
19	Supercapacitors: An Efficient Ultraâ€Flexible Photoâ€Charging System Integrating Organic Photovoltaics and Supercapacitors (Adv. Energy Mater. 20/2020). Advanced Energy Materials, 2020, 10, 2070090.	10.2	4
20	Paper-Based Electrochemical Sensors Using Paper as a Scaffold to Create Porous Carbon Nanotube Electrodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30680-30685.	4.0	37
21	Airtight, flexible, disposable barrier for extubation. Journal of Anesthesia, 2020, 34, 798-799.	0.7	5
22	A single-phase brookite TiO ₂ nanoparticle bridge enhances the stability of perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 2009-2017.	2.5	25
23	PD-L1/L2 protein levels rapidly increase on monocytes via trogocytosis from tumor cells in classical Hodgkin lymphoma. Leukemia, 2020, 34, 2405-2417.	3.3	31
24	Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics. Small Methods, 2020, 4, 1900762.	4.6	18
25	Groove fabrication on surface of soft gelatin gel utilizing micro-electrical discharge machining (Micro-EDM). Journal of Food Engineering, 2020, 277, 109919.	2.7	10
26	Printing support hydrogels for creating vascular-like structures in stacked cell sheets. Artificial Life and Robotics, 2020, 25, 199-203.	0.7	3
27	An Efficient Ultraâ€Flexible Photoâ€Charging System Integrating Organic Photovoltaics and Supercapacitors. Advanced Energy Materials, 2020, 10, 2000523.	10.2	46
28	Ultraflexible Organic Photovoltaics: Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics (Small Methods 3/2020). Small Methods, 2020, 4, 2070013.	4.6	0
29	High Operation Stability of Ultraflexible Organic Solar Cells with Ultravioletâ€Filtering Substrates. Advanced Materials, 2019, 31, e1808033.	11.1	44
30	New thermal protection system using high-temperature carbon fibre-reinforced plastic sandwich panel. Acta Astronautica, 2019, 160, 519-526.	1.7	37
31	Development of Insect Cyborgs with Artificial Wings. , 2019, , .		1
32	Flying Cyborg: A New Approach for the Study of Coleoptera's Flight Pitching. , 2019, , .		0
33	Attempts on Pico-Precision Machining via Combination of ELID-Grinding and Polishing. Journal of the Japan Society for Precision Engineering, 2019, 85, 304-309.	0.0	1
34	Oblique Electrostatic Inkjet-Deposited TiO2 Electron Transport Layers for Efficient Planar Perovskite Solar Cells. Scientific Reports, 2019, 9, 19494.	1.6	29
35	Low-Temperature-Processed Brookite-Based TiO ₂ Heterophase Junction Enhances Performance of Planar Perovskite Solar Cells. Nano Letters, 2019, 19, 598-604.	4.5	61
36	Durable Ultraflexible Organic Photovoltaics with Novel Metalâ€Oxideâ€Free Cathode. Advanced Functional Materials, 2019, 29, 1808378.	7.8	34

#	Article	IF	Citations
37	Development of a highâ€precision viscous chocolate printer utilizing electrostatic inkjet printing. Journal of Food Process Engineering, 2019, 42, e12934.	1.5	9
38	Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4589-4594.	3.3	106
39	The high precision drawing method of chocolate utilizing electrostatic ink-jet printer. Journal of Food Engineering, 2018, 216, 138-143.	2.7	18
40	Highly Efficient Planar Perovskite Solar Cells Exploiting a Compact TiO <inf>2</inf> /Anatase TiO <inf>2</inf> Single Crystalline Nanoparticles Electron Transport Bilayer. , 2018, , .		0
41	Ultraflexible Nearâ€Infrared Organic Photodetectors for Conformal Photoplethysmogram Sensors. Advanced Materials, 2018, 30, e1802359.	11.1	171
42	Simple action potential measurement of cardiac cell sheet utilizing electronic sheet. Artificial Life and Robotics, 2018, 23, 321-327.	0.7	2
43	Development of the Improving Process for the 3D Printed Structure. Scientific Reports, 2017, 7, 39852.	1.6	67
44	Fundamental characteristics of printed gelatin utilizing micro 3D printer. Artificial Life and Robotics, 2017, 22, 316-320.	0.7	4
45	Fabrication of micro-gelatin fiber utilizing coacervation method. Artificial Life and Robotics, 2017, 22, 197-202.	0.7	3
46	Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers. Japanese Journal of Applied Physics, 2017, 56, 05EB06.	0.8	1
47	Bio-inspired wing-folding mechanism of micro air vehicle (MAV). Artificial Life and Robotics, 2017, 22, 203-208.	0.7	13
48	Flow control for cell growth by movement of magnetic particles utilizing electromagnetic force. Artificial Life and Robotics, 2016, 21, 1-4.	0.7	9
49	Printing Characteristic of Gelatin utilizing Micro 3D Printer attached a Warm Machine. The Proceedings of the Materials and Processing Conference, 2016, 2016.24, 403.	0.0	0
50	High Efficiency Dye-Sensitized Solar Cell. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 65-69.	0.0	0
51	Precision printing of gelatin utilizing electrostatic inkjet. Japanese Journal of Applied Physics, 2014, 53, 05HC01.	0.8	9
52	Spray-coated Pt counter electrode of dye-sensitized solar cell utilizing electrostatic inkjet printing. Japanese Journal of Applied Physics, 2014, 53, 05HA08.	0.8	2
53	Fabrication of Comb Shape of Leading Edge Wing of Dragonfly. Key Engineering Materials, 2014, 625, 182-186.	0.4	1
54	Characteristics on micro-biofabrication by patterning with electrostatically injected droplet. CIRP Annals - Manufacturing Technology, 2014, 63, 221-224.	1.7	12

#	Article	IF	CITATIONS
55	Fabrication and Mechanical Properties of C/C-HfC-SiC Composites. Key Engineering Materials, 2014, 625, 657-661.	0.4	3
56	Fundamental Characteristics of Bioprint on Calcium Alginate Gel. Japanese Journal of Applied Physics, 2013, 52, 05DB20.	0.8	6
57	Dye-Sensitized Solar Cell Utilizing Electrostatic Inkjet. Japanese Journal of Applied Physics, 2013, 52, 05DC23.	0.8	13
58	Fabrication of Dye-sensitized Solar Cells Using Electrostatic Inkjet Printing. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 383-385.	0.1	6
59	NEW DYE ADSORPTION METHOD FOR DYE-SENSITIZED SOLAR CELL UTILIZING ELECTROSTATIC INKJET. Journal of Advanced Science, 2013, 25, 25-30.	0.1	O
60	BioCell print utilizing patterning with electrostatically injected droplet (PELID) method. Artificial Life and Robotics, 2012, 17, 59-62.	0.7	7
61	Fabrication of collagen gel fiber films utilizing PELID method. Journal of Advanced Science, 2012, 23, 14-18.	0.1	1
62	Development of the dye-sensitized solar cell by micro digital fabrication. Journal of Advanced Science, 2012, 24, 16-20.	0.1	0
63	Core Technologies on Roll-to-Roll Printed Electronics. Journal of the Japan Society for Precision Engineering, 2012, 78, 674-677.	0.0	1
64	Fundamental characteristics of printed cell structures utilizing electrostatic inkjet phenomena. Sensors and Actuators A: Physical, 2011, 166, 251-255.	2.0	28
65	711 Patterning collagen Utilizing PELID Method and its applications for Three-Dimensional cell Structures. The Proceedings of Ibaraki District Conference, 2011, 2011.19, 197-198.	0.0	O
66	Fabrication of solar cell utilizing digital fabrication technology. , 2010, , .		0
67	1108 Fabrication of Three Dimensional Cellular Structure Utilizing PELID (Patterning with) Tj ETQq1 1 0.784314 r 2010.18, 315-316.	rgBT /Ovei 0.0	erlock 10 Tf <mark>50</mark> O
68	S1602-2-2 Fabrication of umbo on dragonfly wing vein. The Proceedings of the JSME Annual Meeting, 2010, 2010.5, 83-84.	0.0	0
69	Fabrication of Living Cell Structure Utilizing Electro-Static Inkjet Phenomena. , 2009, , .		0
70	Electrostatic micro-ozone fan that utilizes ionic wind induced in pin-to-plate corona discharge system. Journal of Electrostatics, 2008, 66, 445-454.	1.0	35
71	An Ozone Fan Utilizing Pin-to-Plate Corona Discharge Field. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 2116-2121.	0.2	0
72	Micro Fan Utilizing Ionic Wind Induced in Pin-to-Plate Discharge System. 880-02 Nihon Kikai Gakkai Ronbunshå« Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 789-795.	0.2	0

#	Article	IF	CITATIONS
73	Development of electrostatic paper separation and feed mechanism. Journal of Electrostatics, 2007, 65, 438-444.	1.0	9
74	Force at spark discharge in pin-to-plate system. Journal of Electrostatics, 2007, 65, 75-81.	1.0	5
75	1207 Inkjet Printing Utilizing Electrostatic Force. The Proceedings of the Conference on Information Intelligence and Precision Equipment IIP, 2007, 2007, 128-130.	0.0	O
76	Classification of Particle Size Utilizing Traveling Wave Field. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2006, 72, 3509-3516.	0.2	0
77	Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system. Journal of Electrostatics, 2006, 64, 400-407.	1.0	35
78	Paper Separation and Feed Mechanism Utilizing Electrostatic Force. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 1361-1367.	0.2	0
79	Micro Electrostatic Driving Mechanisms Utilizing Slanted-Fiber Sheet and Slanted-Plates. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 1884-1891.	0.2	1
80	Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system. Journal Physics D: Applied Physics, 2005, 38, 887-894.	1.3	46
81	Force at Spark Discharge in Pin-to-Plate Gas Discharge System. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70, 1149-1154.	0.2	0
82	lonic Wind in Pin-to-Plate Corona Discharge System. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70, 169-175.	0.2	3
83	Micro-Driving Mechanisms Utilizing Force Generated in Pin-to-Plate Gas Discharge System. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70, 3260-3265.	0.2	0
84	Analysis of Electrostatic Driving Mechanism with Slanted-Fiber Sheet. The Proceedings of the JSME Annual Meeting, 2004, 2004.5, 375-376.	0.0	0
85	Formation of Micro Droplet Utilizing Electrostatic Inkjet Phenomena. The Proceedings of the Conference on Information Intelligence and Precision Equipment IIP, 2004, 2004, 254-257.	0.0	0
86	Paper Separation Mechanism Utilizing Electrostatic Force. The Proceedings of the JSME Annual Meeting, 2003, 2003.5, 287-288.	0.0	0
87	P-CM-01 Electrostatic Inkjet Phenomena Utilizing Pin-to-Plate System. Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment IIP/ISPS Joint MIPE, 2003, 2003, 327-328.	0.0	0
88	220 Ionic Wind in Pin-to-Plate Discharge System. The Proceedings of the Dynamics & Design Conference, 2003, 2003, _220-1220-4	0.0	0
89	Electrostatic Driving Mechanism with Slanted-Fiber Seat. The Proceedings of the JSME Annual Meeting, 2003, 2003.5, 285-286.	0.0	0
90	P-CM-02 Paper Separation and Feed Utilizing Electrostatic Force. Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment IIP/ISPS Joint MIPE, 2003, 2003, 329-330.	0.0	0

#	Article	IF	CITATIONS
91	Driving Mechanism on Water in Pin-to-Plate Gas Discharge Field. The Proceedings of the JSME Annual Meeting, 2002, 2002.7, 237-238.	0.0	0