Diana Kirilovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208438/publications.pdf

Version: 2024-02-01

66234 74018 6,297 107 42 75 citations h-index g-index papers 111 111 111 2746 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Elucidation of the essential amino acids involved in the binding of the cyanobacterial Orange Carotenoid Protein to the phycobilisome. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148504.	0.5	4
2	A kaleidoscope of photosynthetic antenna proteins and their emerging roles. Plant Physiology, 2022, 189, 1204-1219.	2.3	14
3	Unifying Perspective of the Ultrafast Photodynamics of Orange Carotenoid Proteins from <i>Synechocystis</i> : Peril of High-Power Excitation, Existence of Different S* States, and Influence of Tagging. Jacs Au, 2022, 2, 1084-1095.	3.6	8
4	Immobilization of Orange Carotenoid Protein on mesoporous silica SBA-15 for the development of photoactivable nanodevices. Microporous and Mesoporous Materials, 2022, 340, 112007.	2.2	2
5	Structure-function-dynamics relationships in the peculiar Planktothrix PCC7805 OCP1: Impact of his-tagging and carotenoid type. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148584.	0.5	6
6	Photosynthesis The Orange Carotenoid Protein and the Regulation of Energy Transfer in Cyanobacteria., 2021,, 375-383.		0
7	State transitions and photosystems spatially resolved in individual cells of the cyanobacterium <i>Synechococcus elongatus</i>). Plant Physiology, 2021, 186, 569-580.	2.3	12
8	Inverse regulation of light harvesting and photoprotection is mediated by a 3′-end-derived sRNA in cyanobacteria. Plant Cell, 2021, 33, 358-380.	3.1	18
9	Light stress in green and red Planktothrix strains: The orange carotenoid protein and its related photoprotective mechanism. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148037.	0.5	7
10	Changing Color for Photoprotection: The Orange Carotenoid Protein. Trends in Plant Science, 2020, 25, 92-104.	4. 3	83
11	Structural dynamics in the C terminal domain homolog of orange carotenoid Protein reveals residues critical for carotenoid uptake. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148214.	0.5	13
12	Revisiting cyanobacterial state transitions. Photochemical and Photobiological Sciences, 2020, 19, 585-603.	1.6	69
13	State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148255.	0.5	18
14	Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. Advances in Photosynthesis and Respiration, 2020, , 367-396.	1.0	5
15	Effects of Modification of Light Parameters on the Production of Cryptophycin, Cyanotoxin with Potent Anticancer Activity, in Nostoc sp Toxins, 2020, 12, 809.	1.5	7
16	Heterocyst Formation under the Control of a Cell-Specific Antisense RNA. Plant and Cell Physiology, 2019, 60, 1631-1632.	1.5	0
17	Interdomain interactions reveal the molecular evolution of the orange carotenoid protein. Nature Plants, 2019, 5, 1076-1086.	4.7	30
18	Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 488-498.	0.5	25

#	Article	IF	CITATIONS
19	Two-Step Structural Changes in Orange Carotenoid Protein Photoactivation Revealed by Time-Resolved Fourier Transform Infrared Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 3259-3266.	1.2	24
20	Lightâ€controlled carotenoid transfer between waterâ€soluble proteins related to cyanobacterial photoprotection. FEBS Journal, 2019, 286, 1908-1924.	2.2	36
21	The Cytochrome <i>b</i> ₆ <i>f</i> Complex Is Not Involved in Cyanobacterial State Transitions. Plant Cell, 2019, 31, 911-931.	3.1	33
22	Evolution and function of light-harvesting antenna in oxygenic photosynthesis. Advances in Botanical Research, 2019, , 247-293.	0.5	10
23	Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein. Journal of the American Chemical Society, 2019, 141, 520-530.	6.6	80
24	Switching an Individual Phycobilisome Off and On. Journal of Physical Chemistry Letters, 2018, 9, 2426-2432.	2.1	16
25	State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1059-1066.	0.5	36
26	Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer. Communications Biology, 2018, 1, 125.	2.0	39
27	The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 308-317.	0.5	28
28	Paralogs of the C-Terminal Domain of the Cyanobacterial Orange Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins. Plant Physiology, 2017, 175, 1283-1303.	2.3	52
29	Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. Photosynthesis Research, 2017, 131, 105-117.	1.6	30
30	Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. Molecular Plant, 2016, 9, 1379-1394.	3.9	83
31	Cyanobacterial photoprotection by the orange carotenoid protein. Nature Plants, 2016, 2, 16180.	4.7	166
32	Different Functions of the Paralogs to the N-Terminal Domain of the Orange Carotenoid Protein in the Cyanobacterium <i>Anabaena</i> j> sp. PCC 7120. Plant Physiology, 2016, 171, 1852-1866.	2.3	76
33	Controlling Light Harvesting with Light. Journal of the American Chemical Society, 2016, 138, 11616-11622.	6.6	50
34	A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. Photosynthesis Research, 2016, 130, 237-249.	1.6	11
35	Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1655-62.	3.3	75
36	Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals. Photosynthesis Research, 2016, 127, 91-102.	1.6	40

#	Article	IF	CITATIONS
37	Echinenone vibrational properties: From solvents to the orange carotenoid protein. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1044-1054.	0.5	48
38	Regulation of Orange Carotenoid Protein Activity in Cyanobacterial Photoprotection. Plant Physiology, 2015, 169, 737-747.	2.3	47
39	Biosynthesis of soluble carotenoid holoproteins in Escherichia coli. Scientific Reports, 2015, 5, 9085.	1.6	62
40	A 12 Ã carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science, 2015, 348, 1463-1466.	6.0	192
41	Dissipating energy by carotenoids. Nature Chemical Biology, 2015, 11, 242-243.	3.9	16
42	Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynthesis Research, 2015, 126, 3-17.	1.6	110
43	Structural and Functional Modularity of the Orange Carotenoid Protein: Distinct Roles for the Nand C-Terminal Domains in Cyanobacterial Photoprotection Â. Plant Cell, 2014, 26, 426-437.	3.1	114
44	Specificity of the Cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures À Â. Plant Physiology, 2014, 164, 790-804.	2.3	30
45	The role of the high potential form of the cytochrome b559: Study of Thermosynechococcus elongatus mutants. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 908-919.	0.5	20
46	The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher Â. Plant Cell, 2014, 26, 1781-1791.	3.1	110
47	Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. Advances in Photosynthesis and Respiration, 2014, , 471-501.	1.0	40
48	Excited States of the Inactive and Active Forms of the Orange Carotenoid Protein. Journal of Physical Chemistry B, 2013, 117, 9121-9128.	1.2	33
49	Characterization of the Synechocystis PCC 6803 Fluorescence Recovery Protein involved in photoprotection. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 348-354.	0.5	62
50	Structural, Mechanistic and Genomic Insights into OCP-Mediated Photoprotection. Advances in Botanical Research, 2013, 65, 1-26.	0.5	14
51	The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochemical and Photobiological Sciences, 2013, 12, 1135-1143.	1.6	162
52	Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10022-10027.	3.3	102
53	The Essential Role of the N-Terminal Domain of the Orange Carotenoid Protein in Cyanobacterial Photoprotection: Importance of a Positive Charge for Phycobilisome Binding. Plant Cell, 2012, 24, 1972-1983.	3.1	82
54	Picosecond Kinetics of Light Harvesting and Photoprotective Quenching in Wild-Type and Mutant Phycobilisomes Isolated from the Cyanobacterium Synechocystis PCC 6803. Biophysical Journal, 2012, 102, 1692-1700.	0.2	87

#	Article	IF	Citations
55	The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch. Journal of Physical Chemistry B, 2012, 116, 2568-2574.	1.2	70
56	The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 158-166.	0.5	171
57	ApcD, ApcF and ApcE are not required for the Orange Carotenoid Protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1418-1427.	0.5	71
58	Photosynthetic cytochrome c550. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1152-1163.	0.5	22
59	Site, Rate, and Mechanism of Photoprotective Quenching in Cyanobacteria. Journal of the American Chemical Society, 2011, 133, 18304-18311.	6.6	128
60	Photoprotection in Cyanobacteria: The Orange Carotenoid Protein and Energy Dissipation. , 2011, , 395-421.		4
61	Effects of formate binding on the quinone–iron electron acceptor complex of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 216-226.	0.5	30
62	Essential role of two tyrosines and two tryptophans on the photoprotection activity of the Orange Carotenoid Protein. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 293-301.	0.5	82
63	The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: Their involvement in chlorophyll biogenesis for Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1143-1151.	0.5	38
64	A High Redox Potential Form of Cytochrome c550 in Photosystem II from Thermosynechococcus elongatus. Journal of Biological Chemistry, 2011, 286, 5985-5994.	1.6	16
65	In Vitro Reconstitution of the Cyanobacterial Photoprotective Mechanism Mediated by the Orange Carotenoid Protein in <i>Synechocystis</i> PCC 6803. Plant Cell, 2011, 23, 2631-2643.	3.1	171
66	Photoelectron Generation by Photosystemâ€II Core Complexes Tethered to Gold Surfaces. ChemSusChem, 2010, 3, 471-475.	3.6	34
67	The Photoactive Orange Carotenoid Protein and Photoprotection in Cyanobacteria. Advances in Experimental Medicine and Biology, 2010, 675, 139-159.	0.8	39
68	Structural Determinants Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria. Journal of Biological Chemistry, 2010, 285, 18364-18375.	1.6	152
69	Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11620-11625.	3.3	125
70	Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid Protein. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 280-288.	0.5	106
71	The Orange Carotenoid Protein of Cyanobacteria. , 2009, , 3-17.		8
72	Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1344-1354.	0.5	126

#	Article	IF	CITATIONS
73	A photoactive carotenoid protein acting as light intensity sensor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12075-12080.	3.3	324
74	Orange Carotenoid Protein (OCP) Related NPQ in Synechocystis PCC 6803 OCP-Phycobilisomes Interactions., 2008,, 997-1000.		3
75	Light Induced Energy Dissipation in Iron-Starved Cyanobacteria. , 2008, , 1607-1610.		1
76	Site-Directed Mutagenesis of Cytochrome b559 in the Cyanobacterium Thermosynechococcus elongatus., 2008,, 15-18.		1
77	Non-photochemical-quenching Mechanisms in the Cyanobacterium Thermosynechococcus elongatus., 2008,, 993-996.		1
78	Influence of the Redox Potential of the Primary Quinone Electron Acceptor on Photoinhibition in Photosystem II. Journal of Biological Chemistry, 2007, 282, 12492-12502.	1.6	75
79	Light-Induced Energy Dissipation in Iron-Starved Cyanobacteria: Roles of OCP and IsiA Proteins. Plant Cell, 2007, 19, 656-672.	3.1	134
80	Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynthesis Research, 2007, 93, 7-16.	1.6	201
81	A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria. Plant Cell, 2006, 18, 992-1007.	3.1	396
82	Near-infrared-induced Transitions in the Manganese Cluster of Photosystem II: Action Spectra for the S2 and S3 Redox States. Plant and Cell Physiology, 2005, 46, 837-842.	1.5	37
83	Biosynthetic Ca2+/Sr2+ Exchange in the Photosystem II Oxygen-evolving Enzyme of Thermosynechococcus elongatus. Journal of Biological Chemistry, 2004, 279, 22809-22819.	1.6	145
84	Cytochrome c550 in the Cyanobacterium Thermosynechococcus elongatus. Journal of Biological Chemistry, 2004, 279, 52869-52880.	1.6	36
85	Redox properties of the photosystem II cytochromes b559 and c550 in the cyanobacterium Thermosynechococcus elongatus. Journal of Biological Inorganic Chemistry, 2003, 8, 206-216.	1.1	74
86	Structural and EPR Characterization of the Soluble Form of Cytochrome c-550 and of the psbV2 Gene Product from the Cyanobacterium Thermosynechococcus elongatus. Plant and Cell Physiology, 2003, 44, 697-706.	1.5	39
87	Redox Control of ntcA Gene Expression in Synechocystis sp. PCC 6803. Nitrogen Availability and Electron Transport Regulate the Levels of the NtcA Protein. Plant Physiology, 2001, 125, 969-981.	2.3	47
88	Regulation of psbA and psaE Expression by Light Quality in Synechocystis Species PCC 6803. A Redox Control Mechanism. Plant Physiology, 2001, 125, 1988-2000.	2.3	81
89	UV-B radiation induced exchange of the D1 reaction centre subunits produced from the psbA2 and psbA3 genes in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Journal, 2000, 267, 2640-2648.	0.2	31
90	Redox Control of psbA Gene Expression in the Cyanobacterium Synechocystis PCC 6803. Involvement of the Cytochrome b6/fComplex. Plant Physiology, 2000, 122, 505-516.	2.3	89

#	Article	IF	Citations
91	Recovery of Photosystem II Activity in Photoinhibited Synechocystis Cells:  Light-Dependent Translation Activity Is Required besides Light-Independent Synthesis of the D1 Protein. Biochemistry, 2000, 39, 2032-2041.	1.2	11
92	Redox control of psbA expression in cyanobacteria Synechocystis strains. Journal of Photochemistry and Photobiology B: Biology, 1999, 48, 104-113.	1.7	31
93	UV-B Radiation-Induced Donor- and Acceptor-Side Modifications of Photosystem II in the CyanobacteriumSynechocystissp. PCC 6803â€. Biochemistry, 1999, 38, 12786-12794.	1.2	195
94	î"pH-Dependent Photosystem II Fluorescence Quenching Induced by Saturating, Multiturnover Pulses in Red Algae1. Plant Physiology, 1998, 118, 103-113.	2.3	41
95	Expression of the psbA gene during photoinhibition and recovery in Synechocystis PCC 6714: inhibition and damage of transcriptional and translational machinery prevent the restoration of photosystem II activity. Plant Molecular Biology, 1997, 34, 1-13.	2.0	34
96	State Transitions or î"pH-Dependent Quenching of Photosystem II Fluorescence in Red Algae. Biochemistry, 1996, 35, 9435-9445.	1.2	67
97	A new phenotype for a herbicide resistant mutant of Synechocystis 6714 with a high sensitivity to photoinhibition. Plant Science, 1996, 115, 165-174.	1.7	9
98	Comparison of state 1-state 2 transitions in the green alga Chlamydomonas reinhardtii and in the red alga Rhodella violacea: effect of kinase and phosphatase inhibitors. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1232, 91-95.	0.5	16
99	Influence of DCMU and ferricyanide on photodamage in photosystem II. Biochemistry, 1994, 33, 3087-3095.	1.2	69
100	The primary structure of D1 near the QB pocket influences oxygen evolution. Photosynthesis Research, 1993, 38, 387-394.	1.6	13
101	Apparent destabilization of the S1 state related to herbicide resistance in a cyanobacterium mutant. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1060, 37-44.	0.5	8
102	Protection of reaction center II from photodamage by low temperature and anaerobiosis in spinach chloroplasts. FEBS Letters, 1991, 279, 201-204.	1.3	36
103	Primary events occurring in photoinhibition in Synechocystis 6714 wild-type and an atrazine-resistant mutant. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1020, 87-93.	0.5	33
104	Mutations responsible for high light sensitivity in an atrazine-resistant mutant of Synechcystis 6714. Plant Molecular Biology, 1989, 13, 355-363.	2.0	31
105	Reversible and irreversible photoinhibition in herbicide-resistant mutants of Synechocystis 6714. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 933, 124-131.	0.5	36
106	Specificity of energy transfer to photosystem II by in vitro reassociated homologous and heterologous membrane-bound phycobilisomes. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 451-459.	0.5	4
107	In vitro reassociation of phycobiliproteins and membranes to form functional membrane-bound phycobilisomes. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 724, 416-426.	0.5	13