Inge Zijdewind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Muscle Fatigability After Hex-Bar Deadlift Exercise Performed With Fast or Slow Tempo. International Journal of Sports Physiology and Performance, 2021, 16, 117-123.	2.3	0
2	Fatigue following mild traumatic brain injury relates to visual processing and effort perception in the context of motor performance. NeuroImage: Clinical, 2021, 32, 102783.	2.7	5
3	Older Compared With Younger Adults Performed 467 Fewer Sit-to-Stand Trials, Accompanied by Small Changes in Muscle Activation and Voluntary Force. Frontiers in Aging Neuroscience, 2021, 13, 679282.	3.4	3
4	Voluntary suppression of associated activity decreases force steadiness in the active hand. European Journal of Neuroscience, 2021, 54, 5075-5091.	2.6	1
5	Increased Ipsilateral M1 Activation after Incomplete Spinal Cord Injury Facilitates Motor Performance. Journal of Neurotrauma, 2021, 38, 2988-2998.	3.4	2
6	A cross-sectional comparison of performance, neurophysiological and MRI outcomes of responders and non-responders to fampridine treatment in multiple sclerosis – An explorative study. Journal of Clinical Neuroscience, 2020, 82, 179-185.	1.5	6
7	Age-specific modulation of intermuscular beta coherence during gait before and after experimentally induced fatigue. Scientific Reports, 2020, 10, 15854.	3.3	14
8	Neurophysiological impairments in multiple sclerosis—Central and peripheral motor pathways. Acta Neurologica Scandinavica, 2020, 142, 401-417.	2.1	25
9	Editorial: Fatigability and Motor Performance in Special and Clinical Populations. Frontiers in Physiology, 2020, 11, 570861.	2.8	3
10	Minimal effects of age and prolonged physical and mental exercise on healthy adults' gait. Gait and Posture, 2019, 74, 205-211.	1.4	12
11	Force decline after low and high intensity contractions in persons with multiple sclerosis. Clinical Neurophysiology, 2019, 130, 359-367.	1.5	8
12	Effects of experimentally induced fatigue on healthy older adults' gait: A systematic review. PLoS ONE, 2019, 14, e0226939.	2.5	23
13	Cross-education does not improve early and late-phase rehabilitation outcomes after ACL reconstruction: a randomized controlled clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy, 2019, 27, 478-490.	4.2	13
14	Age-related changes in brain deactivation but not in activation after motor learning. Neurolmage, 2019, 186, 358-368.	4.2	28
15	Racing an Opponent: Alteration of Pacing, Performance, and Muscle-Force Decline but Not Rating of Perceived Exertion. International Journal of Sports Physiology and Performance, 2018, 13, 283-289.	2.3	24
16	Cross-education does not accelerate the rehabilitation of neuromuscular functions after ACL reconstruction: a randomized controlled clinical trial. European Journal of Applied Physiology, 2018, 118, 1609-1623.	2.5	25
17	Somatosensory electrical stimulation improves skill acquisition, consolidation, and transfer by increasing sensorimotor activity and connectivity. Journal of Neurophysiology, 2018, 120, 281-290.	1.8	31
18	Age- and Sex-Related Differences in Motor Performance During Sustained Maximal Voluntary Contraction of the First Dorsal Interosseous. Frontiers in Physiology, 2018, 9, 637.	2.8	7

#	Article	IF	CITATIONS
19	Self-Reported Fatigue After Mild Traumatic Brain Injury Is Not Associated With Performance Fatigability During a Sustained Maximal Contraction. Frontiers in Physiology, 2018, 9, 1919.	2.8	4
20	The Assessment of Motor Fatigability in Persons With Multiple Sclerosis: A Systematic Review. Neurorehabilitation and Neural Repair, 2017, 31, 413-431.	2.9	65
21	Fatigue, Sleep Disturbances, and Their Influence on Quality of Life in Cervical Dystonia Patients. Movement Disorders Clinical Practice, 2017, 4, 517-523.	1.5	36
22	An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation. Knee Surgery, Sports Traumatology, Arthroscopy, 2017, 25, 172-183.	4.2	38
23	Motor Skill Acquisition and Retention after Somatosensory Electrical Stimulation in Healthy Humans. Frontiers in Human Neuroscience, 2016, 10, 115.	2.0	16
24	Disease-Induced Skeletal Muscle Atrophy and Fatigue. Medicine and Science in Sports and Exercise, 2016, 48, 2307-2319.	0.4	128
25	Pacing Strategy, Muscle Fatigue, and Technique in 1500-m Speed-Skating and Cycling Time Trials. International Journal of Sports Physiology and Performance, 2016, 11, 337-343.	2.3	34
26	Neuronal mechanisms of motor learning are age dependent. Neurobiology of Aging, 2016, 46, 149-159.	3.1	18
27	Fatigue and Fatigability in Persons With Multiple Sclerosis. Exercise and Sport Sciences Reviews, 2016, 44, 123-128.	3.0	40
28	Knee jerk responses in infants at high risk for cerebral palsy: an observational EMG study. Pediatric Research, 2016, 80, 363-370.	2.3	8
29	Reduced Voluntary Activation During Brief and Sustained Contractions of a Hand Muscle in Secondary-Progressive Multiple Sclerosis Patients. Neurorehabilitation and Neural Repair, 2016, 30, 307-316.	2.9	27
30	Reduced voluntary drive during sustained but not during brief maximal voluntary contractions in the first dorsal interosseous weakened by spinal cord injury. Journal of Applied Physiology, 2015, 119, 1320-1329.	2.5	8
31	Muscle Fatigability During a Sustained Index Finger Abduction and Depression Scores Are Associated With Perceived Fatigue in Patients With Relapsing-Remitting Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2015, 29, 796-802.	2.9	30
32	Weight dependent modulation of motor resonance induced by weight estimation during observation of partially occluded lifting actions. Neuropsychologia, 2015, 66, 237-245.	1.6	19
33	Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults. Age, 2015, 37, 9779.	3.0	25
34	Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans. European Journal of Applied Physiology, 2015, 115, 2505-2519.	2.5	28
35	Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue. Neurorehabilitation and Neural Repair, 2015, 29, 424-435.	2.9	27
36	Age-related Increase in Activation of Effort-related Brain Areas During a Sustained Fatiguing Contraction Medicine and Science in Sports and Exercise, 2015, 47, 320.	0.4	0

#	Article	IF	CITATIONS
37	Increased Bilateral Interactions in Middle-Aged Subjects. Frontiers in Aging Neuroscience, 2014, 6, 5.	3.4	9
38	Increased reaction times and reduced response preparation already starts at middle age. Frontiers in Aging Neuroscience, 2014, 6, 79.	3.4	19
39	Motor unit firing rates during spasms in thenar muscles of spinal cord injured subjects. Frontiers in Human Neuroscience, 2014, 8, 922.	2.0	12
40	Human spinal cord injury: motor unit properties and behaviour. Acta Physiologica, 2014, 210, 5-19.	3.8	51
41	Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neuroscience and Biobehavioral Reviews, 2014, 47, 22-35.	6.1	62
42	Mirror training to augment cross-education during resistance training: a hypothesis. Frontiers in Human Neuroscience, 2013, 7, 396.	2.0	40
43	Do Additional Inputs Change Maximal Voluntary Motor Unit Firing Rates After Spinal Cord Injury?. Neurorehabilitation and Neural Repair, 2012, 26, 58-67.	2.9	22
44	Fatigue Perceived by Multiple Sclerosis Patients Is Associated With Muscle Fatigue. Neurorehabilitation and Neural Repair, 2012, 26, 48-57.	2.9	77
45	Firing patterns of spontaneously active motor units in spinal cordâ€injured subjects. Journal of Physiology, 2012, 590, 1683-1697.	2.9	29
46	Mechanisms underlying muscle fatigue differ between multiple sclerosis patients and controls: A combined electrophysiological and neuroimaging study. NeuroImage, 2012, 59, 3110-3118.	4.2	66
47	Secondary sensory area SII is crucially involved in the preparation of familiar movements compared to movements never made before. Human Brain Mapping, 2011, 32, 564-579.	3.6	16
48	Corticospinal excitability during observation and imagery of simple and complex hand tasks: Implications for motor rehabilitation. Behavioural Brain Research, 2010, 213, 35-41.	2.2	118
49	Inadvertent Contralateral Activity during a Sustained Unilateral Contraction Reflects the Direction of Target Movement. Journal of Neuroscience, 2009, 29, 6353-6357.	3.6	21
50	Voluntary activation and cortical activity during a sustained maximal contraction: An fMRI study. Human Brain Mapping, 2009, 30, 1014-1027.	3.6	75
51	Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle. Human Brain Mapping, 2008, 29, 281-299.	3.6	83
52	Contralateral muscle activity and fatigue in the human first dorsal interosseous muscle. Journal of Applied Physiology, 2008, 105, 70-82.	2.5	56
53	Reduced cortical activity during maximal bilateral contractions of the index finger. NeuroImage, 2007, 35, 16-27.	4.2	48
54	Effects of motor fatigue on human brain activity, an fMRI study. NeuroImage, 2007, 35, 1438-1449.	4.2	110

#	Article	IF	CITATIONS
55	MR compatible strain gauge based force transducer. Journal of Neuroscience Methods, 2007, 164, 247-254.	2.5	18
56	Interaction between force production and cognitive performance in humans. Clinical Neurophysiology, 2006, 117, 660-667.	1.5	40
57	The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Experimental Brain Research, 2006, 175, 526-535.	1.5	73
58	Fatigue of muscles weakened by death of motoneurons. Muscle and Nerve, 2006, 33, 21-41.	2.2	60
59	Brain Activity During Motor Fatigue and Cognitive Task Performance. Medicine and Science in Sports and Exercise, 2006, 38, S29.	0.4	Ο
60	The effect of caffeine on cognitive task performance and motor fatigue. Psychopharmacology, 2005, 180, 539-547.	3.1	73
61	Surface EMG measurements during fMRI at 3T: Accurate EMG recordings after artifact correction. NeuroImage, 2005, 27, 240-246.	4.2	55
62	Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury. Muscle and Nerve, 2004, 29, 575-584.	2.2	12
63	Effects of imagery motor training on torque production of ankle plantar flexor muscles. Muscle and Nerve, 2003, 28, 168-173.	2.2	96
64	Motor Unit Firing During and After Voluntary Contractions of Human Thenar Muscles Weakened by Spinal Cord Injury. Journal of Neurophysiology, 2003, 89, 2065-2071.	1.8	73
65	Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles. Muscle and Nerve, 2002, 25, 797-804.	2.2	59
66	Motor fatigue and cognitive task performance in humans. Journal of Physiology, 2002, 545, 313-319.	2.9	135
67	Patterns of Pathological Firing in Human Motor Units. Advances in Experimental Medicine and Biology, 2002, 508, 237-244.	1.6	28
68	Bilateral Interactions During Contractions of Intrinsic Hand Muscles. Journal of Neurophysiology, 2001, 85, 1907-1913.	1.8	108
69	Spontaneous motor unit behavior in human thenar muscles after spinal cord injury. Muscle and Nerve, 2001, 24, 952-962.	2.2	52
70	Muscle fatigue induced by stimulation with and without doublets. Muscle and Nerve, 2000, 23, 1348-1355.	2.2	69
71	Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Experimental Brain Research, 2000, 130, 529-532.	1.5	9
72	Potentiating and fatiguing cortical reactions in a voluntary fatigue test of a human hand muscle. Experimental Brain Research, 2000, 130, 529-532.	1.5	16

#	Article	IF	CITATIONS
73	Fatigue-associated changes in the electromyogram of the human first dorsal interosseous muscle. Muscle and Nerve, 1999, 22, 1432-1436.	2.2	28
74	Task-related variations in motoneuronal drive to a human intrinsic hand muscle. Neuroscience Letters, 1998, 242, 139-142.	2.1	7
75	Influence of a voluntary fatigue test on the contralateral homologous muscle in humans?. Neuroscience Letters, 1998, 253, 41-44.	2.1	65
76	Spatial differences in fatigueâ€associated electromyographic behaviour of the human first dorsal interosseus muscle Journal of Physiology, 1995, 483, 499-509.	2.9	50
77	Index finger position and force of the human first dorsal interosseus and its ulnar nerve antagonist. Journal of Applied Physiology, 1994, 77, 987-997.	2.5	35
78	Fatigue associated EMG behavior of the first dorsal interosseous and adductor pollicis muscles in different groups of subjects. Muscle and Nerve, 1994, 17, 1044-1054.	2.2	22
79	Electromyogram and force during stimulated fatigue tests of muscles in dominant and non-dominant hands. European Journal of Applied Physiology and Occupational Physiology, 1990, 60, 127-132.	1.2	36