Stefano Vanni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208352/publications.pdf Version: 2024-02-01

STEEANO VANNI

#	Article	IF	CITATIONS
1	Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science, 2015, 349, 432-436.	6.0	301
2	Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science, 2014, 345, 693-697.	6.0	291
3	Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking. PLoS ONE, 2011, 6, e22678.	1.1	252
4	A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nature Communications, 2014, 5, 4916.	5.8	230
5	ER Membrane Phospholipids and Surface Tension Control Cellular Lipid Droplet Formation. Developmental Cell, 2017, 41, 591-604.e7.	3.1	213
6	Identification of clustering artifacts in photoactivated localization microscopy. Nature Methods, 2011, 8, 527-528.	9.0	197
7	Amphipathic Lipid Packing Sensor Motifs: Probing Bilayer Defects with Hydrophobic Residues. Biophysical Journal, 2013, 104, 575-584.	0.2	171
8	From zero to six double bonds: phospholipid unsaturation and organelle function. Trends in Cell Biology, 2015, 25, 427-436.	3.6	168
9	A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nature Communications, 2015, 6, 6671.	5.8	166
10	Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. Journal of Membrane Biology, 2015, 248, 611-640.	1.0	157
11	Conical Lipids in Flat Bilayers Induce Packing Defects Similar to that Induced by Positive Curvature. Biophysical Journal, 2013, 104, 585-593.	0.2	149
12	Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophysical Journal, 2017, 112, 1417-1430.	0.2	102
13	BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nature Communications, 2014, 5, 5647.	5.8	94
14	Observation of "Ionic Lock―Formation in Molecular Dynamics Simulations of Wild-Type β1 and β2 Adrenergic Receptors. Biochemistry, 2009, 48, 4789-4797.	1.2	65
15	Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Current Biology, 2020, 30, 3775-3787.e7.	1.8	59
16	PackMem: A Versatile Tool to Compute and Visualize Interfacial Packing Defects in Lipid Bilayers. Biophysical Journal, 2018, 115, 436-444.	0.2	57
17	A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition. ELife, 2016, 5, .	2.8	57
18	Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. ELife, 2021, 10, .	2.8	55

Stefano Vanni

#	Article	IF	CITATIONS
19	Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proceedings of the United States of America, 2021, 118, .	3.3	52
20	Role of Aggregation in Rhodopsin Signal Transduction. Biochemistry, 2010, 49, 4827-4832.	1.2	49
21	Origin of the Spectral Shifts among the Early Intermediates of the Rhodopsin Photocycle. Journal of the American Chemical Society, 2014, 136, 3842-3851.	6.6	42
22	Methyl-branched lipids promote the membrane adsorption of \hat{i}_{\pm} -synuclein by enhancing shallow lipid-packing defects. Physical Chemistry Chemical Physics, 2015, 17, 15589-15597.	1.3	42
23	Predicting Novel Binding Modes of Agonists to β Adrenergic Receptors Using All-Atom Molecular Dynamics Simulations. PLoS Computational Biology, 2011, 7, e1001053.	1.5	38
24	Ceramide chain length–dependent protein sorting into selective endoplasmic reticulum exit sites. Science Advances, 2020, 6, .	4.7	38
25	Local accumulation of diacylglycerol alters membrane properties nonlinearly due to its transbilayer activity. Communications Chemistry, 2019, 2, .	2.0	37
26	A Conserved Protonation-Induced Switch can Trigger "lonic-Lock―Formation in Adrenergic Receptors. Journal of Molecular Biology, 2010, 397, 1339-1349.	2.0	36
27	Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes. Journal of Physical Chemistry Letters, 2017, 8, 3586-3594.	2.1	35
28	Structure and Dynamics of the Acyl Chains in the Membrane Trafficking and Enzymatic Processing of Lipids. Accounts of Chemical Research, 2019, 52, 3087-3096.	7.6	35
29	Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. Journal of Membrane Biology, 2018, 251, 609-631.	1.0	33
30	Ion Binding and Internal Hydration in the Multidrug Resistance Secondary Active Transporter NorM Investigated by Molecular Dynamics Simulations. Biochemistry, 2012, 51, 1281-1287.	1.2	32
31	To Bud or Not to Bud: A Perspective on Molecular Simulations of Lipid Droplet Budding. Frontiers in Molecular Biosciences, 2019, 6, 124.	1.6	27
32	Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein–membrane interactions. Faraday Discussions, 2021, 232, 131-148.	1.6	25
33	How Do Ethanolamine Plasmalogens Contribute to Order and Structure of Neurological Membranes?. Journal of Physical Chemistry B, 2020, 124, 828-839.	1.2	23
34	Pushing the Frontiers of First-Principles Based Computer Simulations of Chemical and Biological Systems. Chimia, 2011, 65, 667.	0.3	22
35	A Closer Look into G Protein Coupled Receptor Activation: X-Ray Crystallography and Long-Scale Molecular Dynamics Simulations. Current Medicinal Chemistry, 2012, 19, 1135-1145.	1.2	21
36	Intracellular Lipid Droplets: From Structure to Function. Lipid Insights, 2017, 10, 117863531774551.	1.0	19

STEFANO VANNI

#	Article	IF	CITATIONS
37	A new formulation of the phase change approach in the theory of conical intersections. Chemical Physics, 2008, 347, 46-56.	0.9	13
38	Proteomics-Based Monitoring of Pathway Activity Reveals that Blocking Diacylglycerol Biosynthesis Rescues from Alpha-Synuclein Toxicity. Cell Systems, 2019, 9, 309-320.e8.	2.9	12
39	Accurate Estimation of Membrane Capacitance from Atomistic Molecular Dynamics Simulations of Zwitterionic Lipid Bilayers. Journal of Physical Chemistry B, 2020, 124, 8278-8286.	1.2	11
40	Toward accurate coarse-graining approaches for protein and membrane simulations. Chemical Modelling, 2015, , 1-52.	0.2	10
41	Lipid Droplet Biogenesis is Driven by Liquid-Liquid Phase Separation. SSRN Electronic Journal, 0, , .	0.4	10
42	Recharging your fats: CHARMM36 parameters for neutral lipids triacylglycerol and diacylglycerol. Biophysical Reports, 2021, 1, 100034.	0.7	10
43	Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. Soft Matter, 2021, 17, 5329-5335.	1.2	8
44	Mechanical (QM/MM) Simulations of Adiabatic and Nonadiabatic Ultrafast Phenomena. Chimia, 2011, 65, 330-333.	0.3	5
45	An Atomistic Look into Bio-inspired Nanoparticles and their Molecular Interactions with Cells. Chimia, 2019, 73, 78.	0.3	4
46	Templated Assembly of Pore-forming Peptides in Lipid Membranes. Chimia, 2019, 73, 59.	0.3	3
47	The Choice of Nanoparticle Surfaceâ€Coupled Fluorescent Dyes Impacts Cellular Interaction. ChemNanoMat, 2022, 8, .	1.5	3
48	Computational Approaches to Investigate and Design Lipid-binding Domains for Membrane Biosensing. Chimia, 2021, 75, 1031.	0.3	1
49	Protonation Equilibrium in the Active Site of the Photoactive Yellow Protein. Molecules, 2021, 26, 2025.	1.7	0