
Jaroslav Vrba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208249/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative effects of undesirable fish on common carp production and overall structure and functioning of fishpond ecosystems. Aquaculture, 2022, 549, 737811.	3.5	9
2	<scp>CARDâ€FISH</scp> and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes. Environmental Microbiology, 2022, 24, 4256-4273.	3.8	7
3	Seasonal Development of Phytoplankton in South Bohemian Fishponds (Czechia). Water (Switzerland), 2022, 14, 1979.	2.7	3
4	The concept of balanced fish nutrition in temperate European fishponds to tackle eutrophication. Journal of Cleaner Production, 2022, 364, 132584.	9.3	4
5	Drivers of plant species composition of ecotonal vegetation in two fishpond management types. Wetlands Ecology and Management, 2021, 29, 93-110.	1.5	7
6	Feedâ€based common carp farming and eutrophication: is there a reason for concern?. Reviews in Aquaculture, 2020, 12, 1736-1758.	9.0	22
7	Insight into Unprecedented Diversity of Cyanopeptides in Eutrophic Ponds Using an MS/MS Networking Approach. Toxins, 2020, 12, 561.	3.4	25
8	Nutrient footprint and ecosystem services of carp production in European fishponds in contrast to EU crop and livestock sectors. Journal of Cleaner Production, 2020, 270, 122268.	9.3	27
9	The Ability of <i>Tetrahymena utriculariae</i> (Ciliophora, Oligohymenophorea) to Colonize Traps of Different Species of Aquatic Carnivorous <i>Utricularia</i> . Journal of Eukaryotic Microbiology, 2020, 67, 608-611.	1.7	4
10	Only the adults survive – A long-term resistance of Isoëtes lacustris to acidity and aluminium toxicity stress in a Bohemian Forest lake. Ecological Indicators, 2020, 111, 106026.	6.3	1
11	Planktivorous fish positively select Daphnia bearing advanced embryos. Marine and Freshwater Research, 2020, 71, 505.	1.3	6
12	Macrophyte assemblages in fishponds under different fish farming management. Aquatic Botany, 2019, 159, 103131.	1.6	10
13	Microbial food webs in hypertrophic fishponds: Omnivorous ciliate taxa are major protistan bacterivores. Limnology and Oceanography, 2019, 64, 2295-2309.	3.1	50
14	Effects of tree dieback on lake water acidity in the unmanaged catchment of Plešné Lake, Czech Republic. Limnology and Oceanography, 2019, 64, 1614-1626.	3.1	11
15	Hunters or farmers? Microbiome characteristics help elucidate the diet composition in an aquatic carnivorous plant. Microbiome, 2018, 6, 225.	11.1	29
16	An Experimental Insight into Extracellular Phosphatases – Differential Induction of Cell-Specific Activity in Green Algae Cultured under Various Phosphorus Conditions. Frontiers in Microbiology, 2018, 9, 271.	3.5	13
17	The Utricularia-associated microbiome: composition, function, and ecology. , 2018, , .		5
18	Recovery of brown trout populations in streams exposed to atmospheric acidification in the Bohemian Forest. Folia Zoologica, 2017, 66, 1-10.	0.9	5

#	Article	IF	CITATIONS
19	Lake water acidification and temperature have a lagged effect on the population dynamics of Isoëtes echinospora via offspring recruitment. Ecological Indicators, 2016, 70, 420-430.	6.3	13
20	Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshwater Biology, 2016, 61, 376-395.	2.4	24
21	Light Availability May Control Extracellular Phosphatase Production in Turbid Environments. Microbial Ecology, 2015, 69, 37-44.	2.8	7
22	Forest Die-Back Modified Plankton Recovery from Acidic Stress. Ambio, 2014, 43, 207-217.	5.5	9
23	Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?. Annals of Botany, 2014, 114, 125-133.	2.9	16
24	Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach. Environmental Pollution, 2014, 186, 115-125.	7.5	25
25	Just how many obstacles are there to creating a National Park? A case study from the Åumava National Park. European Journal of Environmental Sciences, 2014, 4, 30-36.	0.2	11
26	Revitalisation of OrlÃk reservoir – case study of a regional restoration project. European Journal of Environmental Sciences, 2014, 4, 77-82.	0.2	1
27	Current standard assays using artificial substrates overestimate phosphodiesterase activity. Soil Biology and Biochemistry, 2013, 56, 75-79.	8.8	7
28	Spatial and temporal changes of benthic macroinvertebrate assemblages in acidified streams in the Bohemian Forest (Czech Republic). Aquatic Insects, 2012, 34, 157-172.	0.9	5
29	Ecological implications of organic carbon dynamics in the traps of aquatic carnivorous Utricularia plants. Functional Plant Biology, 2011, 38, 583.	2.1	15
30	Phosphorus loading of mountain lakes: Terrestrial export and atmospheric deposition. Limnology and Oceanography, 2011, 56, 1343-1354.	3.1	56
31	Contrasting growth effects of prey capture in two aquatic carnivorous plant species. Fundamental and Applied Limnology, 2010, 176, 153-160.	0.7	21
32	Enzyme production in the traps of aquatic Utricularia species. Biologia (Poland), 2010, 65, 273-278.	1.5	16
33	Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. Biogeochemistry, 2010, 101, 323-333.	3.5	26
34	CELL-SPECIFIC EXTRACELLULAR PHOSPHATASE ACTIVITY OF DINOFLAGELLATE POPULATIONS IN ACIDIFIED MOUNTAIN LAKES1. Journal of Phycology, 2010, 46, 635-644.	2.3	11
35	Utricularia carnivory revisited: plants supply photosynthetic carbon to traps. Journal of Experimental Botany, 2010, 61, 99-103.	4.8	37
36	Effect of Food Quantity and Quality on Population Growth Rate and Digestive Activity in the Euryhaline Rotifer <i>Brachionus plicatilis</i> MĂ¼ller. International Review of Hydrobiology, 2009, 94, 706-719.	0.9	11

#	Article	IF	CITATIONS
37	Extracellular phosphatases produced by phytoplankton and other sources in shallow eutrophic lakes (Wuhan, China): taxon-specific versus bulk activity. Limnology, 2009, 10, 95-104.	1.5	12
38	Short-term variation in extracellular phosphatase activity: possible limitations for diagnosis of nutrient status in particular algal populations. Aquatic Ecology, 2009, 43, 19-25.	1.5	15
39	Microbial community development in the traps of aquatic Utricularia species. Aquatic Botany, 2009, 90, 129-136.	1.6	77
40	Diet quality impact on growth, reproduction and digestive activity in Brachionus calyciflorus. Journal of Plankton Research, 2008, 30, 1123-1131.	1.8	6
41	The role of cell-surface-bound phosphatases in species competition within natural phytoplankton assemblage: an in situ experiment. Journal of Limnology, 2008, 67, 128.	1.1	15
42	Modulation of microbial predator–prey dynamics by phosphorus availability: Growth patterns and survival strategies of bacterial phylogenetic clades. FEMS Microbiology Ecology, 2007, 60, 40-50.	2.7	45
43	Rotifer digestive enzymes: direct detection using the ELF technique. Hydrobiologia, 2007, 593, 159-165.	2.0	9
44	Biomass reallocation within freshwater bacterioplankton induced by manipulating phosphorus availability and grazing. Aquatic Microbial Ecology, 2007, 49, 223-232.	1.8	13
45	Specific activity of cell-surface acid phosphatase in different bacterioplankton morphotypes in an acidified mountain lake. Environmental Microbiology, 2006, 8, 1271-1279.	3.8	24
46	Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environmental Microbiology, 2006, 8, 1613-1624.	3.8	203
47	Biological recovery of the Bohemian Forest lakes from acidification. Biologia (Poland), 2006, 61, S453-S465.	1.5	36
48	A key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes. Biologia (Poland), 2006, 61, S441-S451.	1.5	17
49	Integrated ecological research of catchment-lake ecosystems in the Bohemian Forest (Central) Tj ETQq1 1 0.78	4314 rgBT 1.5	/Oyerlock 10
50	Fluorescence Labelling of Phosphatase Activity in Digestive Glands of Carnivorous Plants. Plant Biology, 2006, 8, 813-820.	3.8	63
51	Extracellular enzyme activities in benthic cyanobacterial mats: comparison between nutrient- enriched and control sites in marshes ofnorthern Belize. Aquatic Microbial Ecology, 2006, 44, 11-20.	1.8	26
52	Bacterial and phytoplankton responses to nutrient and pH changes during short term in situ experiments in two acidified lakes. Algological Studies, 2005, 115, 79-99.	0.1	0
53	Extracellular phosphatase activity of freshwater phytoplankton exposed to different in situ phosphorus concentrations. Marine and Freshwater Research, 2005, 56, 417.	1.3	31
54	Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF). Marine and Freshwater Research, 2005, 56, 189.	1.3	16

#	Article	IF	CITATIONS
55	Detection of extracellular phosphatases in natural spring phytoplankton of a shallow eutrophic lake (Donghu, China). European Journal of Phycology, 2005, 40, 251-258.	2.0	35
56	Effects of phosphorus loading on interactions of algae and bacteria: reinvestigation of the 'phytoplankton-bacteria paradox' in a continuous cultivation system. Aquatic Microbial Ecology, 2005, 38, 203-213.	1.8	49
57	Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. Soil Biology and Biochemistry, 2004, 36, 1569-1576.	8.8	45
58	Are Bacteria the Major Producers of Extracellular Glycolytic Enzymes in Aquatic Environments?. International Review of Hydrobiology, 2004, 89, 102-117.	0.9	39
59	Nutrient cycling in a strongly acidified mesotrophic lake. Limnology and Oceanography, 2004, 49, 1202-1213.	3.1	46
60	Role of diatom-attached choanoflagellates of the genus Salpingoeca as pelagic bacterivores. Aquatic Microbial Ecology, 2004, 36, 257-269.	1.8	21
61	Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central) Tj ETQo	1 1 0.784 8.0	ŀ314 rgBT /○
62	Massive occurrence of heterotrophic filaments in acidified lakes: seasonal dynamics and composition. FEMS Microbiology Ecology, 2003, 46, 281-294.	2.7	24
63	Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environmental Microbiology, 2003, 5, 462-472.	3.8	82
64	Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytologist, 2003, 159, 669-675.	7.3	70
65	Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. European Journal of Phycology, 2003, 38, 295-306.	2.0	67
66	Hysteresis in Reversal of Central European Mountain Lakes from Atmospheric Acidification. Water, Air and Soil Pollution, 2002, 2, 91-114.	0.8	58
67	Size Selective Feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and Its Effects on Bacterial Community Structure: A Study from a Continuous Cultivation System. Microbial Ecology, 2001, 42, 217-227.	2.8	50
68	Impact of ionic aluminium on extracellular phosphatases in acidified lakes. Environmental Microbiology, 2001, 3, 578-587.	3.8	20
69	Quantification of pelagic filamentous microorganisms in aquatic environments using the line-intercept method. FEMS Microbiology Ecology, 2001, 38, 81-85.	2.7	27
70	Predator-Specific Enrichment of Actinobacteria from a Cosmopolitan Freshwater Clade in Mixed Continuous Culture. Applied and Environmental Microbiology, 2001, 67, 2145-2155.	3.1	125
71	Quantification of pelagic filamentous microorganisms in aquatic environments using the line-intercept method. FEMS Microbiology Ecology, 2001, 38, 81-85.	2.7	0
72	Comment to Sherr and Sherr (1999): "ls there any appropriate way to distinguish different β-N-acetylhexosaminidase activities in aquatic environments?― FEMS Microbiology Ecology, 2000, 33, 81-84.	2.7	0

#	Article	IF	CITATIONS
73	Comment to Sherr and Sherr (1999): "Is there any appropriate way to distinguish different β-N-acetylhexosaminidase activities in aquatic environments?― FEMS Microbiology Ecology, 2000, 33, 81-84.	2.7	3
74	Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnology and Oceanography, 1999, 44, 1634-1644.	3.1	119
75	Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquatic Microbial Ecology, 1999, 18, 235-246.	1.8	110
76	Microbial Food Webs in an Artificially Divided Acidic Bog Lake. International Review of Hydrobiology, 1998, 83, 3-18.	0.9	42
77	Extracellular, low-affinity β-N-acetylglucosaminidases linked to the dynamics of diatoms and crustaceans in freshwater systems of different trophic degree. International Review of Hydrobiology, 1997, 82, 277-286.	0.6	17
78	Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Applied and Environmental Microbiology, 1997, 63, 587-595.	3.1	184
79	Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Applied and Environmental Microbiology, 1997, 63, 596-601.	3.1	151
80	Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquatic Microbial Ecology, 1997, 12, 49-63.	1.8	101
81	Comparison of phosphorus deficiency indices during a spring phytoplankton bloom in a eutrophic reservoir. Freshwater Biology, 1995, 33, 73-81.	2.4	25
82	<i>N</i> â€acetylglucosamine dynamics in freshwater environments: Concentration of amino sugars, extracellular enzyme activities, and microbial uptake. Limnology and Oceanography, 1994, 39, 1088-1100.	3.1	36
83	Size-selective feeding by Cyclidium sp. on bacterioplankton and various sizes of cultured bacteria. FEMS Microbiology Ecology, 1994, 14, 157-167.	2.7	19
84	Release of dissolved extracellular β-N-acetylglucosaminidase during crustacean moulting. Limnology and Oceanography, 1994, 39, 712-716.	3.1	36
85	Size-selective feeding by Cyclidium sp. on bacterioplankton and various sizes of cultured bacteria. FEMS Microbiology Ecology, 1994, 14, 157-167.	2.7	25
86	4-Methylumbelliferyl-β- <i>N</i> -Acetylglucosaminide Hydrolysis by a High-Affinity Enzyme, a Putative Marker of Protozoan Bacterivory. Applied and Environmental Microbiology, 1993, 59, 3091-3101.	3.1	42
87	Microbial decomposition of polymer organic matter related to plankton development in a reservoir: activity of α-, β-glucosidase, and β-N-acetylglucosaminidase and uptake of N-acetylglucosamine. Archiv Für Hydrobiologie, 1992, 126, 193-211.	1.1	28