Raffaella Gandolfi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8208223/publications.pdf

Version: 2024-02-01

56 1,252 22 32 papers citations h-index g-index

63 63 1225
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An easy and efficient method for the production of carboxylic acids and aldehydes by microbial oxidation of primary alcohols. Tetrahedron Letters, 2001, 42, 513-514.	1.4	63
2	Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme and Microbial Technology, 2004, 34, 3-9.	3.2	59
3	Steroid hydroxylations with Botryodiplodia malorum and Colletotrichum lini. Steroids, 2006, 71, 429-434.	1.8	48
4	Acetic acid bacteria as enantioselective biocatalysts. Journal of Molecular Catalysis B: Enzymatic, 2002, 17, 235-240.	1.8	47
5	Biotransformations in two-liquid-phase systems. Enzyme and Microbial Technology, 1999, 25, 729-735.	3. 2	46
6	Microbial bioreductions of \hat{l}^3 - and \hat{l}' -ketoacids and their esters. Tetrahedron: Asymmetry, 2001, 12, 1039-1046.	1.8	43
7	Chemoselective oxidation of primary alcohols to aldehydes with Gluconobacter oxydans. Tetrahedron Letters, 2002, 43, 6059-6061.	1.4	42
8	Efficient and selective microbial esterification with dry mycelium of Rhizopus oryzae. Journal of Biotechnology, 2001, 92, 21-26.	3.8	40
9	Enantioselective oxidation of prochiral 2-methyl-1,3-propandiol by Acetobacter pasteurianus. Tetrahedron: Asymmetry, 2003, 14, 2041-2043.	1.8	40
10	Mycelium-bound carboxylesterase from Aspergillus oryzae: an efficient catalyst for acetylation in organic solvent. Enzyme and Microbial Technology, 2000, 27, 626-630.	3.2	37
11	Production of fructooligosaccharides by mycelium-bound transfructosylation activity present in Cladosporium cladosporioides and Penicilium sizovae. Process Biochemistry, 2014, 49, 2174-2180.	3.7	36
12	Lyophilised yeasts: easy-to-handle biocatalysts for stereoselective reduction of ketones. Tetrahedron: Asymmetry, 1999, 10, 3515-3520.	1.8	34
13	Enantioselective reduction and deracemisation using the non-conventional yeast Pichia glucozyma in water/organic solvent biphasic systems: preparation of (S)-1,2-diaryl-2-hydroxyethanones (benzoins). Tetrahedron, 2012, 68, 523-528.	1.9	34
14	Self-assembly of an amphipathic $\hat{l}\pm\hat{l}\pm\hat{l}^2$ -tripeptide into cationic spherical particles for intracellular delivery. Organic and Biomolecular Chemistry, 2017, 15, 6773-6779.	2.8	34
15	Reactivity and stability of mycelium-bound carboxylesterase from Aspergillus oryzae. Biotechnology and Bioengineering, 2002, 77, 232-237.	3.3	32
16	Simplified kinetics and thermodynamics of geraniol acetylation by lyophilized cells of Aspergillus oryzae. Enzyme and Microbial Technology, 2002, 30, 216-223.	3.2	31
17	Enzymatic hydrolysis of capsaicins for the production of vanillylamine using ECB deacylase from Actinoplanes utahensis. Food Chemistry, 2011, 124, 1096-1098.	8.2	30
18	8-Amino-5,6,7,8-tetrahydroquinolines as ligands in iridium(III) catalysts for the reduction of aryl ketones by asymmetric transfer hydrogenation (ATH). Tetrahedron: Asymmetry, 2014, 25, 1031-1037.	1.8	28

#	Article	IF	CITATIONS
19	Cell-bound and extracellular carboxylesterases from Streptomyces: hydrolytic and synthetic activities. Journal of Applied Microbiology, 2000, 89, 870-875.	3.1	26
20	Simple 1,3-diamines and their application as ligands in ruthenium(<scp>ii</scp>) catalysts for asymmetric transfer hydrogenation of aryl ketones. New Journal of Chemistry, 2015, 39, 3792-3800.	2.8	25
21	Evaluation of Chemical Diversity of Biotinylated Chiral 1,3â€Diamines as a Catalytic Moiety in Artificial Imine Reductase. ChemCatChem, 2016, 8, 1665-1670.	3.7	25
22	Enantioselective oxidation of (\hat{A}_{\pm}) -2-phenyl-1-propanol to (S)-2-phenyl-1-propionic acid with Acetobacter aceti: influence of medium engineering and immobilization. Tetrahedron: Asymmetry, 2002, 13, 2345-2349.	1.8	24
23	Production of 2-phenylacetic acid and phenylacetaldehyde by oxidation of 2-phenylethanol with free immobilized cells of Acetobacter aceti. Process Biochemistry, 2004, 39, 749-753.	3.7	23
24	Enantioselective hydrolysis of (RS)-isopropylideneglycerol acetate with Kluyveromyces marxianus. Tetrahedron: Asymmetry, 2004, 15, 1945-1947.	1.8	23
25	Cytotoxic effect of (1-methyl-1 H -imidazol-2-yl)-methanamine and its derivatives in Pt II complexes on human carcinoma cell lines: A comparative study with cisplatin. Bioorganic and Medicinal Chemistry, 2013, 21, 2379-2386.	3.0	23
26	Microbial catalyzed esterification of primary and secondary alcohols in organic solvent. Biotechnology Letters, 1996, 10, 103-108.	0.5	22
27	Preparation of enantiomerically enriched aromatic \hat{l}^2 -hydroxynitriles and halohydrins by ketone reduction with recombinant ketoreductase KRED1-Pglu. Tetrahedron, 2016, 72, 3974-3979.	1.9	22
28	New Insights into Glycopeptide Antibiotic Binding to Cell Wall Precursors using SPR and NMR Spectroscopy. Chemistry - A European Journal, 2014, 20, 7363-7372.	3.3	21
29	Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(<scp>i</scp>)-catalyzed asymmetric Henry reactions under green conditions. RSC Advances, 2016, 6, 71529-71533.	3.6	21
30	3-(Hydroxy(phenyl)methyl)azetidin-2-ones obtained via catalytic asymmetric hydrogenation or by biotransformation. Tetrahedron: Asymmetry, 2011, 22, 597-602.	1.8	20
31	Biotransformation of aromatic ketones and ketoesters with the non-conventional yeast Pichia glucozyma. Tetrahedron Letters, 2014, 55, 7051-7053.	1.4	19
32	Esterification of phenylacetic and 2-phenylpropionic acids by mycelium-bound carboxylesterases. Enzyme and Microbial Technology, 2005, 36, 432-438.	3.2	18
33	Asymmetric reductions of ethyl 2-(benzamidomethyl)-3-oxobutanoate by yeasts. Tetrahedron: Asymmetry, 2009, 20, 411-414.	1.8	18
34	Chemo- and biocatalytic strategies to obtain phenylisoserine, a lateral chain of Taxol by asymmetric reduction. Tetrahedron: Asymmetry, 2011, 22, 2110-2116.	1.8	18
35	Resolution of (RS)-2-phenylpropanoic acid by enantioselective esterification with dry microbial cells in organic solvent. Tetrahedron: Asymmetry, 2001, 12, 501-504.	1.8	17
36	Direct conversion of polyconjugated compounds into their corresponding carboxylic acids by Acetobacter aceti. Tetrahedron, 2008, 64, 8638-8641.	1.9	13

#	Article	IF	CITATIONS
37	Newly isolated Streptomyces spp. as enantioselective biocatalysts: hydrolysis of 1,2-O-isopropylidene glycerol racemic esters. Journal of Applied Microbiology, 2005, 99, 960-967.	3.1	12
38	Chemoenzymatic resolution of epimeric cis 3-carboxycyclopentylglycine derivatives. Tetrahedron, 2006, 62, 3502-3508.	1.9	12
39	Solid state fermentation for the production of lipolytic fungal enzymes. Annals of Microbiology, 2007, 57, 561-564.	2.6	12
40	Efficient methodology to produce a duloxetine precursor using whole cells of Rhodotorula rubra. Tetrahedron: Asymmetry, 2016, 27, 389-396.	1.8	12
41	Title is missing!. World Journal of Microbiology and Biotechnology, 2002, 18, 409-416.	3.6	11
42	Synthesis of ethyl phenylacetate by lyophilized mycelium of Aspergillus oryzae. Applied Microbiology and Biotechnology, 2005, 67, 637-640.	3.6	11
43	Cascade Reaction by Chemo―and Biocatalytic Approaches to Obtain Chiral Hydroxy Ketones and <i>anti</i> 1,3â€Diols. ChemistryOpen, 2018, 7, 393-400.	1.9	9
44	A new chemoenzymatic synthesis of d-cloprostenol. Tetrahedron: Asymmetry, 2005, 16, 3279-3282.	1.8	8
45	Continuous-flow stereoselective reduction of prochiral ketones in a whole cell bioreactor with natural deep eutectic solvents. Green Chemistry, 2022, 24, 950-956.	9.0	8
46	Biotransformations of Lipoglycopeptides to Obtain Novel Antibiotics. Journal of Antibiotics, 2007, 60, 265-271.	2.0	7
47	Enzymatic resolution of $(\hat{A}\pm)$ -5-phenyl-4,5-dihydroisoxazole-3-carboxylic acid ethyl ester and its transformations into polyfunctionalised amino acids and dipeptides. Tetrahedron: Asymmetry, 2009, 20, 1940-1947.	1.8	6
48	Synthesis and Biological Evaluation of New Natural Phenolic (2 <i>E</i> ,4 <i>E</i> ,6 <i>E</i> ,6 <i>E</i> ,14, e1700294.	2.1	6
49	Ruthenium(II) complexes bearing (NNN) ligand: catalytic evaluation of different solvent-mediated coordination modes. Canadian Journal of Chemistry, 2018, 96, 40-43.	1.1	6
50	Vancomycin-Iridium (III) Interaction: An Unexplored Route for Enantioselective Imine Reduction. Molecules, 2019, 24, 2771.	3.8	6
51	A new efficient synthesis of enantiopure diastereomeric 3′-aminocyclopentylglycines. Tetrahedron: Asymmetry, 2008, 19, 584-592.	1.8	5
52	Chemoenzymatic deacylation of ramoplanin. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5283-5287.	2.2	5
53	Alternative Strategy to Obtain Artificial Imine Reductase by Exploiting Vancomycin/D-Ala-D-Ala Interactions with an Iridium Metal Complex. Inorganic Chemistry, 2021, 60, 2976-2982.	4.0	5
54	Hybrid Catalysts from Copper Biosorbing Bacterial Strains and Their Recycling for Catalytic Application in the Asymmetric Addition Reaction of B2(pin)2 on $\hat{l}\pm,\hat{l}^2$ -Unsaturated Chalcones. Catalysts, 2022, 12, 433.	3.5	5

#	Article	IF	CITATIONS
55	A new bacterial mannosidase for the selective modification of ramoplanin and its derivatives. Enzyme and Microbial Technology, 2007, 41, 806-811.	3.2	4
56	Direct Esterification with Dry Mycelia of Molds: A (Stereo)selective, Mild and Efficient Method for Obtaining Structurally Diverse Esters., 0,, 79-92.		0