Jiale Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8207673/publications.pdf

Version: 2024-02-01

92 5,097 36
papers citations h-index

100 100 100 3513 all docs docs citations times ranked citing authors

70

g-index

#	Article	IF	CITATIONS
1	Superoleophobic surfaces. Chemical Society Reviews, 2017, 46, 4168-4217.	38.1	613
2	Bioinspired Wetting Surface via Laser Microfabrication. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6777-6792.	8.0	194
3	A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. Journal of Materials Chemistry A, 2014, 2, 5499-5507.	10.3	172
4	Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39863-39871.	8.0	162
5	Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. Journal of Materials Chemistry A, 2014, 2, 8790-8795.	10.3	160
6	Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions. Applied Surface Science, 2016, 389, 1148-1155.	6.1	160
7	Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. Journal of Materials Chemistry A, 2017. 5. 25249-25257.	10.3	147
8	Femtosecond Laser Weaving Superhydrophobic Patterned PDMS Surfaces with Tunable Adhesion. Journal of Physical Chemistry C, 2013, 117, 24907-24912.	3.1	143
9	A Simple Way To Achieve Pattern-Dependent Tunable Adhesion in Superhydrophobic Surfaces by a Femtosecond Laser. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4905-4912.	8.0	141
10	Femtosecond laser controlled wettability of solid surfaces. Soft Matter, 2015, 11, 8897-8906.	2.7	125
11	Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser. ACS Applied Materials & Emptosecond Laser. ACS Applied Materials & Emptosecond Laser. ACS	8.0	122
12	Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces. Journal of Materials Chemistry A, 2015, 3, 10703-10709.	10.3	122
13	Oilâ€Water Separation: A Gift from the Desert. Advanced Materials Interfaces, 2016, 3, 1500650.	3.7	121
14	<i>Nepenthes</i> Inspired Design of Selfâ€Repairing Omniphobic Slippery Liquid Infused Porous Surface (SLIPS) by Femtosecond Laser Direct Writing. Advanced Materials Interfaces, 2017, 4, 1700552.	3.7	120
15	Oil/water separation based on natural materials with super-wettability: recent advances. Physical Chemistry Chemical Physics, 2018, 20, 25140-25163.	2.8	119
16	Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir, 2013, 29, 3274-3279.	3.5	117
17	Dragonflyâ€Eyeâ€Inspired Artificial Compound Eyes with Sophisticated Imaging. Advanced Functional Materials, 2016, 26, 1995-2001.	14.9	102
18	Anisotropic Wetting on Microstrips Surface Fabricated by Femtosecond Laser. Langmuir, 2011, 27, 359-365.	3.5	101

#	Article	IF	CITATIONS
19	Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry A, 2015, 3, 9379-9384.	10.3	99
20	A Review of Femtosecond‣aser″nduced Underwater Superoleophobic Surfaces. Advanced Materials Interfaces, 2018, 5, 1701370.	3.7	95
21	Superhydrophobicity-memory surfaces prepared by a femtosecond laser. Chemical Engineering Journal, 2020, 383, 123143.	12.7	92
22	A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation. RSC Advances, 2019, 9, 12470-12495.	3.6	89
23	Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Optics Letters, 2015, 40, 1928.	3.3	87
24	Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas. Nanoscale, 2018, 10, 3688-3696.	5.6	87
25	Femtosecond Laser Direct Writing of Porous Network Microstructures for Fabricating Superâ€Slippery Surfaces with Excellent Liquid Repellence and Antiâ€Cell Proliferation. Advanced Materials Interfaces, 2018, 5, 1701479.	3.7	86
26	Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Applied Physics Letters, 2016, 109, .	3.3	85
27	Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability. Chemical Communications, 2015, 51, 9813-9816.	4.1	78
28	Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Applied Surface Science, 2014, 288, 579-583.	6.1	76
29	Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water. ACS Applied Materials & Enterfaces, 2019, 11, 8667-8675.	8.0	64
30	Green, Biodegradable, Underwater Superoleophobic Wood Sheet for Efficient Oil/Water Separation. ACS Omega, 2018, 3, 1395-1402.	3.5	61
31	Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser. Applied Physics A: Materials Science and Processing, 2013, 111, 243-249.	2.3	60
32	Reversible Underwater Lossless Oil Droplet Transportation. Advanced Materials Interfaces, 2015, 2, 1400388.	3.7	60
33	Bioinspired Fabrication of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic PDMS Surfaces by Femtosecond Laser. Advanced Materials Interfaces, 2018, 5, 1701245.	3.7	48
34	How To Obtain Six Different Superwettabilities on a Same Microstructured Pattern: Relationship between Various Superwettabilities in Different Solid/Liquid/Gas Systems. Langmuir, 2019, 35, 921-927.	3.5	48
35	Designing "Supermetalphobic―Surfaces that Greatly Repel Liquid Metal by Femtosecond Laser Processing: Does the Surface Chemistry or Microstructure Play a Crucial Role?. Advanced Materials Interfaces, 2020, 7, 1901931.	3.7	48
36	Bioinspired superhydrophobic surfaces with directional Adhesion. RSC Advances, 2014, 4, 8138.	3.6	44

#	Article	IF	CITATIONS
37	Superamphiphobic Surfaces with Controllable Adhesion Fabricated by Femtosecond Laser Bessel Beam on PTFE. Advanced Materials Interfaces, 2019, 6, 1900550.	3.7	38
38	Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics. Journal of Colloid and Interface Science, 2020, 578, 146-154.	9.4	38
39	Underwater Superaerophobic and Superaerophilic Nanoneedlesâ€5tructured Meshes for Water/Bubbles Separation: Removing or Collecting Gas Bubbles in Water. Global Challenges, 2018, 2, 1700133.	3.6	31
40	Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication. Advanced Engineering Materials, 2019, 21, 1800994.	3.5	28
41	Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	25
42	Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light. Science China Chemistry, 2021, 64, 861-872.	8.2	24
43	Underwater Transparent Miniature "Mechanical Hand―Based on Femtosecond Laser-Induced Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation. Langmuir, 2017, 33, 3659-3665.	3.5	23
44	Femtosecond-Laser-Produced Underwater "Superpolymphobic―Nanorippled Surfaces: Repelling Liquid Polymers in Water for Applications of Controlling Polymer Shape and Adhesion. ACS Applied Nano Materials, 2019, 2, 7362-7371.	5.0	22
45	Femtosecond Laser-Induced Underwater Superoleophobic Surfaces with Reversible pH-Responsive Wettability. Langmuir, 2019, 35, 3295-3301.	3.5	22
46	Magnetically Controllable Isotropic/Anisotropic Slippery Surface for Flexible Droplet Manipulation. Langmuir, 2020, 36, 15403-15409.	3.5	22
47	Underwater Superaerophobicity/Superaerophilicity and Unidirectional Bubble Passage Based on the Femtosecond Laserâ€6tructured Stainless Steel Mesh. Advanced Materials Interfaces, 2020, 7, 1902128.	3.7	22
48	Controllable underwater anisotropic oil-wetting. Applied Physics Letters, 2014, 105, .	3.3	21
49	High-Performance Laser Beam Homogenizer Based on Double-Sided Concave Microlens. IEEE Photonics Technology Letters, 2014, 26, 2086-2089.	2.5	21
50	Femtosecond laser controlling underwater oil-adhesion of glass surface. Applied Physics A: Materials Science and Processing, 2015, 119, 837-844.	2.3	21
51	Microfluidic Channels Fabrication Based on Underwater Superpolymphobic Microgrooves Produced by Femtosecond Laser Direct Writing. ACS Applied Polymer Materials, 2019, 1, 2819-2825.	4.4	21
52	Femtosecond Laser-Structured Underwater "Superpolymphobic―Surfaces. Langmuir, 2019, 35, 9318-9322.	3.5	21
53	Lens-on-lens microstructures. Optics Letters, 2015, 40, 5359.	3.3	20
54	A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys. Biomaterials Science, 2020, 8, 6505-6514.	5.4	20

#	Article	IF	Citations
55	Using an "underwater superoleophobic pattern―to make a liquid lens array. RSC Advances, 2015, 5, 40907-40911.	3.6	18
56	Direct Fabrication of Microlens Arrays on PMMA With Laser-Induced Structural Modification. IEEE Photonics Technology Letters, 2015, 27, 2253-2256.	2.5	18
57	A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids. RSC Advances, 2019, 9, 6650-6657.	3.6	18
58	Reducing Adhesion for Dispensing Tiny Water/Oil Droplets and Gas Bubbles by Femtosecond Laserâ€Treated Needle Nozzles: Superhydrophobicity, Superoleophobicity, and Superaerophobicity. ChemNanoMat, 2019, 5, 241-249.	2.8	18
59	Liquidâ€Infused Slippery Stainless Steel Surface Prepared by Alcoholâ€Assisted Femtosecond Laser Ablation. Advanced Materials Interfaces, 2021, 8, 2001334.	3.7	18
60	Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting. Optics and Laser Technology, 2022, 146, 107593.	4.6	18
61	Simple and Low-Cost Oil/Water Separation Based on the Underwater Superoleophobicity of the Existing Materials in Our Life or Nature. Frontiers in Chemistry, 2020, 8, 507.	3.6	17
62	Trapped Airâ€Induced Reversible Transition between Underwater Superaerophilicity and Superaerophobicity on the Femtosecond Laserâ€Ablated Superhydrophobic PTFE Surfaces. Advanced Materials Interfaces, 2019, 6, 1900262.	3.7	16
63	Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser. Nanoscale, 2021, 13, 10414-10424.	5.6	16
64	Reversible switch between underwater superaerophilicity and superaerophobicity on the superhydrophobic nanowire-haired mesh for controlling underwater bubble wettability. AIP Advances, 2018, 8, .	1.3	15
65	Underwater Anisotropic 3D Superoleophobic Tracks Applied for the Directional Movement of Oil Droplets and the Microdroplets Reaction. Advanced Materials Interfaces, 2019, 6, 1900067.	3.7	15
66	Liquid Metal-Based Reconfigurable and Repairable Electronics Designed by a Femtosecond Laser. ACS Applied Electronic Materials, 2020, 2, 2685-2691.	4.3	15
67	Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser. Journal of Colloid and Interface Science, 2021, 582, 1203-1212.	9.4	15
68	Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures. Scientific Reports, 2016, 6, 32675.	3.3	14
69	Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes. Materials, 2020, 13, 3490.	2.9	14
70	Bioinspired Artificial Compound Eyes: Characteristic, Fabrication, and Application. Advanced Materials Technologies, 2021, 6, 2100091.	5 . 8	14
71	Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques. Optics Express, 2019, 27, 35903.	3.4	14
72	High-level integration of three-dimensional microcoils array in fused silica. Optics Letters, 2015, 40, 4050.	3.3	13

#	Article	IF	CITATIONS
73	A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	13
74	Emerging Separation Applications of Surface Superwettability. Nanomaterials, 2022, 12, 688.	4.1	12
75	Mini-Review on Bioinspired Superwetting Microlens Array and Compound Eye. Frontiers in Chemistry, 2020, 8, 575786.	3.6	10
76	Tuning a surface super-repellent to liquid metal by a femtosecond laser. RSC Advances, 2020, 10, 3301-3306.	3.6	10
77	Superwettabilityâ€based separation: From oil/water separation to polymer/water separation and bubble/water separation. Nano Select, 2021, 2, 1580-1588.	3.7	10
78	A miniaturized Rogowski current transducer with wide bandwidth and fast response. Journal of Micromechanics and Microengineering, 2016, 26, 115015.	2.6	8
79	Femtosecond Laser Microfabrication of Porous Superwetting Materials for Oil/Water Separation: A Mini-Review. Frontiers in Chemistry, 2020, 8, 585723.	3.6	8
80	Femtosecond laser-patterned slippery surfaces on PET for liquid patterning and blood resistance. Optics and Laser Technology, 2020, 132, 106469.	4.6	8
81	Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application. Optics Express, 2020, 28, 25716.	3.4	8
82	Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna. Applied Physics B: Lasers and Optics, 2015, 120, 47-51.	2.2	5
83	Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review. Frontiers in Chemistry, 2020, 8, 828.	3.6	5
84	Fano Resonance-Assisted Plasmonic Trapping of Nanoparticles. Plasmonics, 2017, 12, 627-630.	3.4	3
85	Hall of Fame Article: A Review of Femtosecondâ€Laserâ€Induced Underwater Superoleophobic Surfaces (Adv. Mater. Interfaces 7/2018). Advanced Materials Interfaces, 2018, 5, 1870033.	3.7	3
86	3D integrated coreless microtransformer processed by femtosecond laser micro/nano fabrication. Journal of Micromechanics and Microengineering, 2020, 30, 105002.	2.6	3
87	Underwater superpolymphobicity: Concept, achievement, and applications. Nano Select, 2021, 2, 1011-1022.	3.7	3
88	Underwater Superoleophobic Tracks: Underwater Anisotropic 3D Superoleophobic Tracks Applied for the Directional Movement of Oil Droplets and the Microdroplets Reaction (Adv. Mater. Interfaces) Tj ETQq0 0 0	rg BI.† Ove	rlock 10 Tf 50
89	Bubble Passage: Underwater Superaerophobicity/Superaerophilicity and Unidirectional Bubble Passage Based on the Femtosecond Laserâ€Structured Stainless Steel Mesh (Adv. Mater. Interfaces 14/2020). Advanced Materials Interfaces, 2020, 7, 2070077.	3.7	1
90	Dynamic near-field nanofocusing by V-shaped metal groove via a femtosecond laser excitation. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	0

#	Article	IF	CITATIONS
91	Manufacturing of functional polymer micro- and nano-structures by femtosecond laser pulse. , 2017, , .		O
92	Editorial: Bioinspired Functional Surfaces with Superwettability: From Fabrication to Applications. Frontiers in Chemistry, 2021, 9, 658572.	3.6	0