
Markus Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8207450/publications.pdf Version: 2024-02-01

MADKIIS KELLED

#	Article	IF	CITATIONS
1	Abscisic acid and proline are not equivalent markers for heat, drought and combined stress in grapevines. Australian Journal of Grape and Wine Research, 2022, 28, 119-130.	2.1	19
2	Soil and Climate Geographic Information System Data-Derived Risk Mapping for Grape Phylloxera in Washington State. Frontiers in Plant Science, 2022, 13, 827393.	3.6	0
3	Onset and progression of the berry shrivel ripening disorder in grapes. Australian Journal of Grape and Wine Research, 2021, 27, 280-289.	2.1	4
4	Cuticle and skin cell walls have common and unique roles in grape berry splitting. Horticulture Research, 2021, 8, 168.	6.3	18
5	Soft, Sweet, and Colorful: Stratified Sampling Reveals Sequence of Events at the Onset of Grape Ripening. American Journal of Enology and Viticulture, 2021, 72, 137-151.	1.7	13
6	Modeling the effect of temperature on bud dormancy of grapevines. Agricultural and Forest Meteorology, 2020, 280, 107782.	4.8	16
7	Winter Injury to Grapevine Secondary Phloem and Cambium Impairs Budbreak, Cambium Activity, and Yield Formation. Journal of Plant Growth Regulation, 2020, 39, 1095-1106.	5.1	8
8	High temperature during the budswell phase of grapevines increases shoot water transport capacity. Agricultural and Forest Meteorology, 2020, 295, 108173.	4.8	13
9	Comparison of air temperature measured in a vineyard canopy and at a standard weather station. PLoS ONE, 2020, 15, e0234436.	2.5	6
10	Living with other organisms. , 2020, , 357-381.		0
11	Taxonomy and anatomy. , 2020, , 1-60.		4
12	Phenology and growth cycle. , 2020, , 61-103.		4
13	Water relations and nutrient uptake. , 2020, , 105-127.		2
14	Partitioning of assimilates. , 2020, , 149-198.		0
15	Developmental physiology. , 2020, , 199-277.		9
16	Environmental constraints and stress physiology. , 2020, , 279-356.		1
17	Interactive effects of high temperature and water deficit on Malbec grapevines. Australian Journal of Grape and Wine Research, 2019, 25, 345-356.	2.1	24
18	Softening at the onset of grape ripening alters fruit rheological properties and decreases splitting resistance. Planta, 2019, 250, 1293-1305.	3.2	8

MARKUS KELLER

#	Article	IF	CITATIONS
19	Comparison between grapevine tissue temperature and air temperature. Scientia Horticulturae, 2019, 247, 407-420.	3.6	12
20	Radius of influence of air temperature from automated weather stations installed in complex terrain. Theoretical and Applied Climatology, 2019, 137, 1957-1973.	2.8	9
21	Spatial suitability assessment for vineyard site selection based on fuzzy logic. Precision Agriculture, 2018, 19, 1027-1048.	6.0	22
22	Time-to-event analysis to evaluate dormancy status of single-bud cuttings: an example for grapevines. Plant Methods, 2018, 14, 94.	4.3	18
23	Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness. Planta, 2018, 248, 1201-1211.	3.2	24
24	Dormancy and Cold Hardiness Transitions in Winegrape Cultivars Chardonnay and Cabernet Sauvignon. American Journal of Enology and Viticulture, 2017, 68, 195-202.	1.7	37
25	Predicting Key Phenological Stages for 17 Grapevine Cultivars (<i>Vitis vinifera</i> L.). American Journal of Enology and Viticulture, 2017, 68, 60-72.	1.7	39
26	Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants. Journal of Plant Physiology, 2017, 216, 58-73.	3.5	18
27	Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries. Scientia Horticulturae, 2017, 219, 135-143.	3.6	23
28	Macro- and microclimate conditions may alter grapevine deacclimation: variation in thermal amplitude in two contrasting wine regions from North and South America. International Journal of Biometeorology, 2017, 61, 2033-2045.	3.0	17
29	Grape berry transpiration: determinant factors, developmental changes, and influences on berry ripening. Acta Horticulturae, 2017, , 51-56.	0.2	6
30	Discharge of surplus phloem water may be required for normal grape ripening. Journal of Experimental Botany, 2017, 68, erw476.	4.8	33
31	Deficit Irrigation Alters Grapevine Growth, Physiology, and Fruit Microclimate. American Journal of Enology and Viticulture, 2016, 67, 426-435.	1.7	71
32	Arrested Sugar Accumulation and Altered Organic Acid Metabolism in Grape Berries Affected by Berry Shrivel Syndrome. American Journal of Enology and Viticulture, 2016, 67, 398-406.	1.7	18
33	Plant hydraulic conductance adapts to shoot number but limits shoot vigour in grapevines. Functional Plant Biology, 2015, 42, 366.	2.1	24
34	Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. International Journal of Biometeorology, 2015, 59, 1771-1781.	3.0	32
35	Regulated Deficit Irrigation Alters Anthocyanins, Tannins and Sensory Properties of Cabernet Sauvignon Grapes and Wines. Molecules, 2015, 20, 7820-7844.	3.8	78
36	Grape Berry Transpiration Is Determined by Vapor Pressure Deficit, Cuticular Conductance, and Berry Size. American Journal of Enology and Viticulture, 2015, 66, 454-462.	1.7	61

MARKUS KELLER

#	Article	IF	CITATIONS
37	Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Plant, Cell and Environment, 2015, 38, 1048-1059.	5.7	76
38	Modeling Dormant Bud Cold Hardiness and Budbreak in Twenty-Three <i>Vitis</i> Genotypes Reveals Variation by Region of Origin. American Journal of Enology and Viticulture, 2014, 65, 59-71.	1.7	83
39	Solute accumulation differs in the vacuoles and apoplast of ripening grape berries. Planta, 2014, 239, 633-642.	3.2	59
40	Fruit Ripening Has Little Influence on Grapevine Cold Acclimation. American Journal of Enology and Viticulture, 2014, 65, 417-423.	1.7	9
41	Impact of Extended Maceration and Regulated Deficit Irrigation (RDI) in Cabernet Sauvignon Wines: Characterization of Proanthocyanidin Distribution, Anthocyanin Extraction, and Chromatic Properties. Journal of Agricultural and Food Chemistry, 2013, 61, 6446-6457.	5.2	43
42	Sensory Impact of Extended Maceration and Regulated Deficit Irrigation on Washington State Cabernet Sauvignon Wines. American Journal of Enology and Viticulture, 2013, 64, 505-514.	1.7	23
43	Horticultural Applications of a Newly Revised USDA Plant Hardiness Zone Map. HortTechnology, 2012, 22, 6-19.	0.9	23
44	Morphoanatomical Symptomatology and Osmotic Behavior of Grape Berry Shrivel. Journal of the American Society for Horticultural Science, 2012, 137, 20-30.	1.0	33
45	Not All Shrivels Are Created Equal—Morpho-Anatomical and Compositional Characteristics Differ among Different Shrivel Types That Develop during Ripening of Grape (<i>Vitis) Tj ETQq1 1 0.784</i>	431 4.8 gBT	/Overlock 10
46	Net carbon exchange in grapevine canopies responds rapidly to timing and extent of regulated deficit irrigation. Functional Plant Biology, 2011, 38, 386.	2.1	43
47	Loss of rachis cell viability is associated with ripening disorders in grapes. Journal of Experimental Botany, 2011, 62, 1145-1153.	4.8	43
48	Warm spring temperatures induce persistent season-long changes in shoot development in grapevines. Annals of Botany, 2010, 106, 131-141.	2.9	61
49	Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 2010, 16, 56-69.	2.1	324
50	Spring temperatures alter reproductive development in grapevines. Australian Journal of Grape and Wine Research, 2010, 16, 445-454.	2.1	56
51	Ripening grape berries remain hydraulically connected to the shoot. Journal of Experimental Botany, 2006, 57, 2577-2587.	4.8	151
52	Botrytis cinerea Infection of Grape Flowers: Light and Electron Microscopical Studies of Infection Sites. Phytopathology, 2004, 94, 850-857.	2.2	78
53	Botrytis cinerea Infection in Grape Flowers: Defense Reaction, Latency, and Disease Expression. Phytopathology, 2003, 93, 316-322.	2.2	156
54	Reproductive growth of grapevines in response to nitrogen supply and rootstock. Australian Journal of Grape and Wine Research, 2001, 7, 12-18.	2.1	81