
Christian O Dimkpa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8207113/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environmental Pollution, 2022, 297, 118738.	7.5	18
2	Synthesis and characterization of novel dual-capped Zn–urea nanofertilizers and application in nutrient delivery in wheat. Environmental Science Advances, 2022, 1, 47-58.	2.7	13
3	Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydrate Polymers, 2022, 288, 119356.	10.2	29
4	Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. NanoImpact, 2022, 26, 100406.	4.5	22
5	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	14.6	28
6	Influence of Single and Combined Mixtures of Metal Oxide Nanoparticles on Eggplant Growth, Yield, and Verticillium Wilt Severity. Plant Disease, 2021, 105, 1153-1161.	1.4	15
7	Rice yield and economic response to micronutrient application in Tanzania. Field Crops Research, 2021, 270, 108201.	5.1	8
8	Micro-nutrients in East African lowlands: Are they needed to intensify rice production?. Field Crops Research, 2021, 270, 108219.	5.1	11
9	Biodegradable Polymer Nanocomposites Provide Effective Delivery and Reduce Phosphorus Loss during Plant Growth. ACS Agricultural Science and Technology, 2021, 1, 529-539.	2.3	12
10	Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils, 2020, 56, 299-317.	4.3	251
11	Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation. Science of the Total Environment, 2020, 722, 137808.	8.0	104
12	Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress. Frontiers in Plant Science, 2020, 11, 168.	3.6	120
13	Safeguarding human and planetary health demands a fertilizer sector transformation. Plants People Planet, 2020, 2, 302-309.	3.3	31
14	Nutritional Status of Tomato (<i>Solanum lycopersicum</i>) Fruit Grown in <i>Fusarium</i> -Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2020, 68, 1986-1997.	5.2	51
15	Development of fertilizers for enhanced nitrogen use efficiency – Trends and perspectives. Science of the Total Environment, 2020, 731, 139113.	8.0	191
16	Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688, 926-934.	8.0	196
17	Prospects and Challenges for Solar Fertilizers. Joule, 2019, 3, 1578-1605.	24.0	153
18	Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano, 2019, 6, 2002-2030.	4.3	314

#	Article	IF	CITATIONS
19	Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure. Science of the Total Environment, 2019, 665, 606-616.	8.0	62
20	Effect of Metalloid and Metal Oxide Nanoparticles on Fusarium Wilt of Watermelon. Plant Disease, 2018, 102, 1394-1401.	1.4	135
21	Unlocking the multiple public good services from balanced fertilizers. Food Security, 2018, 10, 273-285.	5.3	30
22	Nanofertilizers: New Products for the Industry?. Journal of Agricultural and Food Chemistry, 2018, 66, 6462-6473.	5.2	297
23	Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry, 2018, 66, 6487-6503.	5.2	416
24	Exposure to Weathered and Fresh Nanoparticle and Ionic Zn in Soil Promotes Grain Yield and Modulates Nutrient Acquisition in Wheat (<i>Triticum aestivum</i> L.). Journal of Agricultural and Food Chemistry, 2018, 66, 9645-9656.	5.2	56
25	Role of Cerium Compounds in Fusarium Wilt Suppression and Growth Enhancement in Tomato (<i>Solanum lycopersicum</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 5959-5970.	5.2	91
26	Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Current Opinion in Environmental Science and Health, 2018, 6, 1-8.	4.1	55
27	Effects of Manganese Nanoparticle Exposure on Nutrient Acquisition in Wheat (Triticum aestivum L.). Agronomy, 2018, 8, 158.	3.0	91
28	Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	152
29	Nanoparticle and Ionic Zn Promote Nutrient Loading of Sorghum Grain under Low NPK Fertilization. Journal of Agricultural and Food Chemistry, 2017, 65, 8552-8559.	5.2	169
30	Methods for Rapid Testing of Plant and Soil Nutrients. Sustainable Agriculture Reviews, 2017, , 1-43.	1.1	23
31	Fortification of micronutrients for efficient agronomic production: a review. Agronomy for Sustainable Development, 2016, 36, 1.	5.3	306
32	Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environmental Toxicology and Chemistry, 2015, 34, 2116-2125.	4.3	33
33	A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	501
34	Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology, 2015, 24, 1305-1314.	2.4	75
35	Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 2015, 51, 897-911.	4.3	297
36	The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. BioMetals, 2015, 28, 101-112.	4.1	134

CHRISTIAN O DIMKPA

#	Article	IF	CITATIONS
37	Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology, 2015, 24, 119-129.	2.4	144
38	ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (<i>Phaseolus vulgaris</i>). Nanotoxicology, 2015, 9, 271-278.	3.0	74
39	Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Environmental Pollution, 2014, 187, 65-72.	7.5	36
40	Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?. Journal of Basic Microbiology, 2014, 54, 889-904.	3.3	110
41	Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals, 2013, 26, 913-924.	4.1	192
42	Fate of CuO and ZnO Nano- and Microparticles in the Plant Environment. Environmental Science & Technology, 2013, 47, 4734-4742.	10.0	246
43	Silver Nanoparticles Disrupt Wheat (<i>Triticum aestivum</i> L.) Growth in a Sand Matrix. Environmental Science & Technology, 2013, 47, 1082-1090.	10.0	299
44	Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads?. Microbiological Research, 2013, 168, 91-98.	5.3	21
45	Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere, 2013, 91, 374-382.	8.2	24
46	The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathology Journal, 2013, 29, 323-329.	1.7	16
47	CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	514
48	Production of Indole-3-Acetic Acid via the Indole-3-Acetamide Pathway in the Plant-Beneficial Bacterium Pseudomonas chlororaphis O6 Is Inhibited by ZnO Nanoparticles but Enhanced by CuO Nanoparticles. Applied and Environmental Microbiology, 2012, 78, 1404-1410.	3.1	98
49	Nanospecific Inhibition of Pyoverdine Siderophore Production in <i>Pseudomonas chlororaphis</i> O6 by CuO Nanoparticles. Chemical Research in Toxicology, 2012, 25, 1066-1074.	3.3	50
50	Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture. Industrial Biotechnology, 2012, 8, 344-357.	0.8	74
51	CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, <i>Pseudomonas chlororaphis</i> O6. Nanotoxicology, 2012, 6, 635-642.	3.0	69
52	Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Science of the Total Environment, 2012, 429, 215-222.	8.0	86
53	Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environmental Pollution, 2011, 159, 1749-1756.	7.5	144
54	Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. Journal of Hazardous Materials, 2011, 188, 428-435.	12.4	100

#	Article	IF	CITATIONS
55	Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida. Chemosphere, 2010, 81, 904-910.	8.2	60
56	Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology and Biochemistry, 2009, 41, 154-162.	8.8	238
57	Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp Chemosphere, 2008, 74, 19-25.	8.2	209