Xiao-Dong Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206938/publications.pdf

Version: 2024-02-01

77	3,323	27 h-index	56
papers	citations		g-index
79	79	79	6199
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Study on the structure and formation mechanism of 15S globulin of soybeans. Food Hydrocolloids, 2021, 113, 106461.	5.6	7
2	Assembly status transition offers an avenue for activity modulation of a supramolecular enzyme. ELife, 2021, 10, .	2.8	3
3	Crystal structure of caspase-11 CARD provides insights into caspase-11 activation. Cell Discovery, 2020, 6, 70.	3.1	14
4	Characterization of mixed solutions of hyperbranched and linear polystyrenes by a combination of sizeâ€exclusion chromatography and analytical ultracentrifugation. Journal of Polymer Science, 2020, 58, 756-765.	2.0	0
5	Synthesis and characterization of degradable hyperbranched poly(2â€ethylâ€2â€oxazoline). Journal of Polymer Science Part A, 2019, 57, 2030-2037.	2.5	7
6	Biased Lewis Pairs: A General Catalytic Approach to Etherâ€Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie - International Edition, 2019, 58, 15478-15487.	7.2	90
7	Preparation and Controlled Degradation of Model Amphiphilic Long-Subchain Hyperbranched Copolymers: Hyperblock versus Hypergraft. Macromolecules, 2019, 52, 1173-1187.	2.2	11
8	Universal Synthetic Strategy for the Construction of Topological Polystyrenesulfonates: The Importance of Linkage Stability during Sulfonation. ACS Macro Letters, 2019, 8, 730-736.	2.3	9
9	A Novel Initiator Containing Alkyne Group for the Polymerization of 2-Ethyl-2-oxazoline. Chinese Journal of Chemical Physics, 2018, 31, 77-84.	0.6	5
10	Effect of a single repeat sequence of the human telomere d(TTAGGG) on structure of single-stranded telomeric DNA d[AGGG(TTAGGG)6]. Chinese Journal of Chemical Physics, 2018, 31, 635-640.	0.6	1
11	Effect of pH and content of reductionâ€sensitive copolymer on the guest exchange kinetics of micelles. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1636-1644.	2.4	0
12	The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials, 2018, 182, 104-113.	5.7	70
13	Reduction-responsive diblock copolymer-modified gold nanorods for enhanced cellular uptake. RSC Advances, 2018, 8, 27546-27555.	1.7	6
14	New insights into folding kinetics of \hat{l}_{\pm} , i % dye-functionalized poly(N - isopropylacrylamide). Chinese Journal of Chemical Physics, 2018, 31, 789-798.	0.6	2
15	Conformations and molecular interactions of poly- \hat{l}^3 -glutamic acid as a soluble microbial product in aqueous solutions. Scientific Reports, 2017, 7, 12787.	1.6	35
16	Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environmental Pollution, 2017, 231, 1388-1392.	3.7	45
17	Effect of Hydrophobic Chain Length on the Stability and Guest Exchange Behavior of Shell-Sheddable Micelles Formed by Disulfide-Linked Diblock Copolymers. Journal of Physical Chemistry B, 2017, 121, 9708-9717.	1.2	7
18	Sedimentation velocity analysis of TMPyP4-induced dimer formation of human telomeric G-quadruplex. RSC Advances, 2017, 7, 55098-55105.	1.7	7

#	Article	IF	Citations
19	Long-subchain Janus-dendritic copolymers from locally confined click reaction and generation-dependent micro-phase separation. Polymer Chemistry, 2017, 8, 3889-3900.	1.9	4
20	Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone. Scientific Reports, 2016, 6, 39124.	1.6	1
21	Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11, 133-144.	6.2	208
22	Double stimuli-responsive polymer systems: How to use crosstalk between pH- and thermosensitivity for drug depots. European Polymer Journal, 2016, 84, 54-64.	2.6	14
23	Degradable polyurethane with poly(2-ethyl-2-oxazoline) brushes for protein resistance. RSC Advances, 2016, 6, 69930-69938.	1.7	21
24	Insight into the effect of methylated urea on the phase transition of aqueous solutions of poly(N) Tj ETQq 0000 Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1145-1151.	gBT /Over 2.4	lock 10 Tf 50 3
25	The effects of monovalent metal ions on the conformation of human telomere DNA using analytical ultracentrifugation. Soft Matter, 2016, 12, 5959-5967.	1.2	10
26	pH-induced conformational change and hydration of poly(methacrylic acid) investigated by analytical ultracentrifugation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 536-537.	1.7	0
27	Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10, 6753-6761.	7. 3	461
28	pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission. ACS Applied Materials & Empty Interfaces, 2016, 8, 3693-3702.	4.0	22
29	Investigation of pH-induced conformational change and hydration of poly(methacrylic acid) by analytical ultracentrifugation. Soft Matter, 2015, 11, 5381-5388.	1.2	29
30	Synthesis and properties of amphiphilic and biodegradable poly(ε-caprolactone- <i>co</i> copolymers. Journal of Polymer Science Part A, 2015, 53, 846-853.	2.5	23
31	Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery inÂvivo. Biomaterials, 2015, 69, 1-11.	5.7	88
32	Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions. Environmental Pollution, 2015, 207, 123-129.	3.7	10
33	Construction and Properties of Hyperbranched Block Copolymer with Independently Adjustable Heterosubchains. Macromolecules, 2014, 47, 8437-8445.	2.2	25
34	Surfactant-mediated settleability and dewaterability of activated sludge. Chemical Engineering Science, 2014, 116, 228-234.	1.9	54
35	Comparative Study of Solution Properties of Amphiphilic 8-Shaped Cyclic-(Polystyrene- <i>b</i> >Poly(acrylic acid)) ₂ and Its Linear Precursor. Macromolecules, 2014, 47, 2487-2495.	2.2	25
36	Effect of Urea on Phase Transition of Poly(<i>N</i> -isopropylacrylamide) Investigated by Differential Scanning Calorimetry. Journal of Physical Chemistry B, 2014, 118, 9460-9466.	1,2	57

#	Article	IF	Citations
37	Degradation Kinetics of Model Hyperbranched Chains with Uniform Subchains and Controlled Locations of Cleavable Disulfide Linkages. Macromolecules, 2014, 47, 650-658.	2.2	27
38	Poly(l-lactide-co-2-(2-methoxyethoxy)ethyl methacrylate): A biodegradable polymer with protein resistance. Colloids and Surfaces B: Biointerfaces, 2014, 116, 531-536.	2.5	11
39	Effect of carbon chain length of monocarboxylic acids on cloud point temperature of poly(2-ethyl-2-oxazoline). Colloid and Polymer Science, 2013, 291, 919-925.	1.0	9
40	pH-Induced Conformational Change and Dimerization of DNA Chains Investigated by Analytical Ultracentrifugation. Journal of Physical Chemistry B, 2013, 117, 11541-11547.	1.2	12
41	Scaling laws between the hydrodynamic parameters and molecular weight of linear poly(2-ethyl-2-oxazoline). RSC Advances, 2013, 3, 15108.	1.7	16
42	Hydration interactions and stability of soluble microbial products in aqueous solutions. Water Research, 2013, 47, 5921-5929.	5.3	29
43	Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment. Journal of the American Chemical Society, 2013, 135, 3200-3207.	6.6	321
44	A Comparative Study of Urea-Induced Aggregation of Collapsed Poly(<i>N</i> -isopropylacrylamide) and Poly(<i>N</i> , <i>N</i> -diethylacrylamide) Chains in Aqueous Solutions. Journal of Physical Chemistry B, 2013, 117, 7481-7488.	1.2	19
45	Coagulation Kinetics of Humic Aggregates in Mono- and Di-Valent Electrolyte Solutions. Environmental Science & Environmental S	4.6	100
46	Kinetics of Coil-to-Globule Transition of Dansyl-Labeled Poly(N-sopropylacrylamide) Chains in Aqueous Solution. Chinese Journal of Chemical Physics, 2012, 25, 389-397.	0.6	3
47	Phase Transition of Poly(acrylic acid-co- <i>N</i> -isopropylacrylamide) Core-shell Nanogels. Chinese Journal of Chemical Physics, 2012, 25, 463-468.	0.6	4
48	Spatial configuration of extracellular polymeric substances of Bacillus megaterium TF10 in aqueous solution. Water Research, 2012, 46, 3490-3496.	5.3	18
49	pH Dependence of Structure and Surface Properties of Microbial EPS. Environmental Science & Emp; Technology, 2012, 46, 737-744.	4.6	225
50	Kinetics of Laser-Heating-Induced Phase Transition of Poly(N-isopropylacrylamide) Chains in Dilute and Semidilute Solutions. Journal of Physical Chemistry B, 2011, 115, 12001-12006.	1.2	20
51	Telechelic Hybrid Poly(acrylic acid)s Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-Assembly in Water. Macromolecules, 2011, 44, 6891-6898.	2.2	73
52	A facile one-pot strategy for preparation of small polymer nanoparticles by self-crosslinking of amphiphilic block copolymers containing acyl azide groups in aqueous media. Soft Matter, 2011, 7, 3956.	1.2	18
53	Crystal structures and putative interface of Saccharomyces cerevisiae mitochondrial matrix proteins Mmf1 and Mam33. Journal of Structural Biology, 2011, 175, 469-474.	1.3	15
54	Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radical Biology and Medicine, 2011, 51, 1035-1053.	1.3	122

#	Article	IF	CITATIONS
55	Disulfide Core Crossâ€Linked PEGylated Polypeptide Nanogel Prepared by a Oneâ€Step Ring Opening Copolymerization of <i>N</i> à€Carboxyanhydrides for Drug Delivery. Macromolecular Bioscience, 2011, 11, 962-969.	2.1	73
56	Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site. Free Radical Research, 2011, 45, 188-200.	1.5	30
57	Cytotoxic effects of Mn(III) <i>N</i> -alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radical Research, 2011, 45, 1289-1306.	1.5	50
58	Dispersion of polystyrene inside polystyreneâ€ <i>b</i> â€poly(<i>N</i> â€isopropylacrylamide) micelles in water. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 749-755.	2.4	6
59	Effect of polystyreneâ€ <i>b</i> â€poly(ethylene oxide) on selfâ€assembly of polystyreneâ€ <i>b</i> â€poly(<i>N</i> â€isopropylacrylamide) in aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1168-1174.	2.4	9
60	Scaling of the molecular weightâ€dependent thermal volume transition of poly(<i>N</i> à€isopropylacrylamide). Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1388-1393.	2.4	11
61	Multistep Thermosensitivity of Poly(<i>N</i> -ci>n-ci>h/i>-ci>n-ci>hock	< i>, <i>N</i>	2-ethylmet
62	Polymer blend latex films: Miscibility and polymer diffusion studied by energy transfer. Polymer, 2008, 49, 2055-2064.	1.8	29
63	Preparation of Well-Defined Coreâ^'Shell Particles by Cu ²⁺ -Mediated Graft Copolymerization of Methyl Methacrylate from Bovine Serum Albumin. Langmuir, 2008, 24, 10717-10722.	1.6	11
64	Can Coil-to-Globule Transition of a Single Chain Be Treated as a Phase Transition?. Journal of Physical Chemistry B, 2008, 112, 8496-8498.	1.2	28
65	Observation of Kinetic and Structural Scalings during Slow Coalescence of Nanobubbles in an Aqueous Solution. Journal of Physical Chemistry B, 2007, 111, 13143-13146.	1,2	43
66	Ultrafast Infrared Heating Laser Pulse-Induced Micellization Kinetics of Poly(ethylene) Tj ETQq0 0 0 rgBT /Overloc	k 10 Tf 50	302 Td (oxid
67	Thermoresponsive Triblock Copolymer Aggregates Investigated by Laser Light Scattering. Journal of Physical Chemistry B, 2007, 111, 5111-5115.	1.2	48
68	Effects of pH and Ionic Strength on the Stability of Nanobubbles in Aqueous Solutions of α-Cyclodextrin. Journal of Physical Chemistry B, 2007, 111, 11745-11749.	1.2	103
69	How Many Stages in the Coil-to-Globule Transition of Linear Homopolymer Chains in a Dilute Solution?. Macromolecules, 2007, 40, 4750-4752.	2.2	68
70	Dynamics of thermoresponsive PNIPAM-g-PEO copolymer chains in semi-dilute solution. Polymer, 2006, 47, 8367-8373.	1.8	25
71	Photochemistry of quinoxaline derivatives and mechanism of the triplet state quenching by electron-poor alkenes. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 98-105.	2.0	16
72	Crosslinkable Vesicles Self-Assembled by Amphiphilic Hyperbranched Polyester. Macromolecular Rapid Communications, 2005, 26, 1741-1745.	2.0	17

XIAO-DONG YE

#	Article	IF	CITATION
73	Microcalorimetric Investigation on Aggregation and Dissolution of Poly(N-isopropylacrylamide) Chains in Water. Macromolecules, 2005, 38, 904-908.	2.2	157
74	Polymer Diffusion in PBMA Latex Films Using a Polymerizable Benzophenone Derivative as an Energy Transfer Acceptor. Macromolecules, 2003, 36, 8749-8760.	2.2	40
75	Effect of Pluronic Surfactants on the Polymer Diffusion Rate in Poly(butyl methacrylate) Latex Films. Macromolecules, 2003, 36, 8886-8889.	2.2	13
76	Film Formation and Polymer Diffusion in Poly(vinyl acetate-co-butyl acrylate) Latex Films. Temperature Dependence. Macromolecules, 2003, 36, 5804-5814.	2.2	42
77	Transient Absorption and Fluorescence Studies of Disstacking Phthalocyanine by Poly(ethylene oxide). Macromolecules, 2002, 35, 3681-3685.	2.2	28