List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206918/publications.pdf Version: 2024-02-01

		8159	5101
268	31,455	76	166
papers	citations	h-index	g-index
272	272	272	24002
272	272	272	24982
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	4.7	1,766
2	The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 2010, 55, 147-170.	1.2	1,227
3	Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the United States of America, 2007, 104, 5732-5737.	3.3	1,172
4	Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution, 2004, 19, 18-24.	4.2	1,159
5	Assessing the Effects of Climate Change on Aquatic Invasive Species. Conservation Biology, 2008, 22, 521-533.	2.4	944
6	Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 2003, 19, 101-121.	0.7	880
7	An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 2004, 178, 389-397.	1.2	815
8	Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 2016, 7, 12485.	5.8	808
9	What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 157-170.	0.7	751
10	Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 2010, 55, 86-107.	1.2	724
11	Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 2006, 25, 730-755.	3.0	704
12	The Potential Conservation Value of Non-Native Species. Conservation Biology, 2011, 25, 428-437.	2.4	597
13	Process-based Principles for Restoring River Ecosystems. BioScience, 2010, 60, 209-222.	2.2	575
14	On defining and quantifying biotic homogenization. Global Ecology and Biogeography, 2006, 15, 113-120.	2.7	570
15	Machine Learning Methods Without Tears: A Primer for Ecologists. Quarterly Review of Biology, 2008, 83, 171-193.	0.0	561
16	Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience, 2020, 70, 330-342.	2.2	553
17	Dam invaders: impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment, 2008, 6, 357-363.	1.9	457
18	Ecological Impacts of Nonnative Freshwater Fishes. Fisheries, 2011, 36, 215-230.	0.6	447

#	Article	IF	CITATIONS
19	Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 2006, 33, 2027-2039.	1.4	444
20	Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution, 2012, 3, 260-267.	2.2	439
21	Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 2010, 55, 171-193.	1.2	416
22	Toward a Mechanistic Understanding and Prediction of Biotic Homogenization. American Naturalist, 2003, 162, 442-460.	1.0	408
23	Will extreme climatic events facilitate biological invasions?. Frontiers in Ecology and the Environment, 2012, 10, 249-257.	1.9	402
24	LIFE-HISTORY STRATEGIES PREDICT FISH INVASIONS AND EXTIRPATIONS IN THE COLORADO RIVER BASIN. Ecological Monographs, 2006, 76, 25-40.	2.4	382
25	Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world's freshwater and marine fishes. Global Ecology and Biogeography, 2007, 16, 694-701.	2.7	311
26	Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions, 2010, 16, 496-513.	1.9	303
27	Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13894-13899.	3.3	283
28	A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1512-1522.	0.7	273
29	The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 2018, 63, 141-163.	1.2	273
30	Global proliferation of small hydropower plants – science and policy. Frontiers in Ecology and the Environment, 2018, 16, 91-100.	1.9	262
31	Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 2012, 93, 35-45.	1.5	253
32	Climatic vulnerability of the world's freshwater and marine fishes. Nature Climate Change, 2017, 7, 718-722.	8.1	217
33	Native invaders – challenges for science, management, policy, and society. Frontiers in Ecology and the Environment, 2012, 10, 373-381.	1.9	208
34	A global meta-analysis of the ecological impacts of nonnative crayfish. Freshwater Science, 2013, 32, 1367-1382.	0.9	207
35	Flow variability and the biophysical vitality of river systems. Comptes Rendus - Geoscience, 2008, 340, 629-643.	0.4	206
36	A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology, 2012, 5, 503-518.	1.1	206

#	Article	IF	CITATIONS
37	A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology, 2002, 47, 1976-1995.	1.2	205
38	Incorporating positive interactions in aquatic restoration and conservation. Frontiers in Ecology and the Environment, 2007, 5, 153-160.	1.9	199
39	Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biology, 2013, 58, 50-62.	1.2	198
40	Global change, global trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment, 2012, 10, 20-28.	1.9	195
41	Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution, 2018, 2, 86-93.	3.4	188
42	Are largeâ€scale flow experiments informing the science and management of freshwater ecosystems?. Frontiers in Ecology and the Environment, 2014, 12, 176-185.	1.9	180
43	Dispersal strength determines metaâ€community structure in a dendritic riverine network. Journal of Biogeography, 2015, 42, 778-790.	1.4	168
44	Placing global stream flow variability in geographic and geomorphic contexts. River Research and Applications, 2006, 22, 149-166.	0.7	167
45	ECOLOGICAL PROCESSES DRIVING BIOTIC HOMOGENIZATION: TESTING A MECHANISTIC MODEL USING FISH FAUNAS. Ecology, 2004, 85, 1867-1875.	1.5	166
46	Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4772-4777.	1.2	162
47	Predictive Models of Fish Species Distributions: A Note on Proper Validation and Chance Predictions. Transactions of the American Fisheries Society, 2002, 131, 329-336.	0.6	159
48	Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshwater Biology, 2006, 51, 224-235.	1.2	146
49	Designing flows to resolve human and environmental water needs in a dam-regulated river. Nature Communications, 2017, 8, 2158.	5.8	144
50	Large-scale Flow Experiments for Managing River Systems. BioScience, 2011, 61, 948-959.	2.2	142
51	Prepare river ecosystems for an uncertain future. Nature, 2019, 570, 301-303.	13.7	142
52	Spatial isolation and fish communities in drainage lakes. Oecologia, 2001, 127, 572-585.	0.9	141
53	Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. , 2011, 21, 3002-3013.		135
54	TRAIT SYNERGISMS AND THE RARITY, EXTIRPATION, AND EXTINCTION RISK OF DESERT FISHES. Ecology, 2008, 89, 847-856.	1.5	129

#	Article	IF	CITATIONS
55	The Aquarium Trade as an Invasion Pathway in the Pacific Northwest. Fisheries, 2011, 36, 74-85.	0.6	129
56	Understanding rivers and their social relations: A critical step to advance environmental water management. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1381.	2.8	127
57	PREDICTING OCCURRENCES AND IMPACTS OF SMALLMOUTH BASS INTRODUCTIONS IN NORTH TEMPERATE LAKES. , 2004, 14, 132-148.		126
58	Challenges and Opportunities in Implementing Managed Relocation for Conservation of Freshwater Species. Conservation Biology, 2011, 25, 40-47.	2.4	125
59	Torturing data for the sake of generality: How valid are our regression models?. Ecoscience, 2000, 7, 501-510.	0.6	121
60	The rapid spread of rusty crayfish (Orconectes rusticus) with observations on native crayfish declines in Wisconsin (U.S.A.) over the past 130Âyears. Biological Invasions, 2006, 8, 1621-1628.	1.2	121
61	The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota, 0, 37, 23-36.	1.0	117
62	Characterizing connectivity relationships in freshwaters using patch-based graphs. Landscape Ecology, 2012, 27, 303-317.	1.9	114
63	Headwater Streams andÂWetlands are CriticalÂfor Sustaining Fish, Fisheries, and Ecosystem Services. Fisheries, 2019, 44, 73-91.	0.6	110
64	Fish–Habitat Relationships in Lakes: Gaining Predictive and Explanatory Insight by Using Artificial Neural Networks. Transactions of the American Fisheries Society, 2001, 130, 878-897.	0.6	107
65	Contextâ€dependent perceptual ranges and their relevance to animal movements in landscapes. Journal of Animal Ecology, 2004, 73, 1190-1194.	1.3	102
66	Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Global Change Biology, 2017, 23, 728-736.	4.2	102
67	Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography, 2009, 36, 1899-1912.	1.4	101
68	The interactive effects of climate change, riparian management, and a nonnative predator on streamâ€rearing salmon. Ecological Applications, 2014, 24, 895-912.	1.8	100
69	Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies. River Research and Applications, 2010, 26, 137-156.	0.7	97
70	Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1791-1807.	0.7	93
71	Biotic homogenization and conservation prioritization. Biological Conservation, 2007, 134, 447-450.	1.9	92
72	Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1346-1359.	0.7	92

#	Article	IF	CITATIONS
73	Predicting invasiveness of species in trade: climate match, trophic guild and fecundity influence establishment and impact of nonâ€native freshwater fishes. Diversity and Distributions, 2016, 22, 148-160.	1.9	91
74	Quantifying variable importance in a multimodel inference framework. Methods in Ecology and Evolution, 2016, 7, 388-397.	2.2	91
75	Merging connectivity rules and largeâ€scale condition assessment improves conservation adequacy in river systems. Journal of Applied Ecology, 2012, 49, 1036-1045.	1.9	84
76	Taxonomic and functional homogenization of an endemic desert fish fauna. Diversity and Distributions, 2012, 18, 366-376.	1.9	84
77	Lay summaries needed to enhance science communication. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3585-3586.	3.3	84
78	Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin. Ecological Indicators, 2011, 11, 304-310.	2.6	83
79	Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science, 2015, 34, 399-409.	0.9	83
80	Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Frontiers in Ecology and the Environment, 2020, 18, 520-528.	1.9	83
81	Species invasions and the changing biogeography of Australian freshwater fishes. Global Ecology and Biogeography, 2008, 17, 25-37.	2.7	81
82	Revealing the pathways by which agricultural landâ€use affects stream fish communities in South Brazilian grasslands. Freshwater Biology, 2016, 61, 1921-1934.	1.2	81
83	Ecology, management, and conservation implications of North American beaver <i>(Castor) Tj ETQq1 1 0.7843 24, 391-409.</i>	14 rgBT / 0.9	Overlock 10 T 78
84	Reframing the debate over assisted colonization. Frontiers in Ecology and the Environment, 2011, 9, 569-574.	1.9	77
85	Dispersal ability and habitat requirements determine landscapeâ€ŀevel genetic patterns in desert aquatic insects. Molecular Ecology, 2015, 24, 54-69.	2.0	76
86	A Species-Specific Approach to Modeling Biological Communities and Its Potential for Conservation. Conservation Biology, 2003, 17, 854-863.	2.4	75
87	Projected Climateâ€Induced Habitat Loss for Salmonids in the John Day River Network, Oregon, U.S.A Conservation Biology, 2012, 26, 873-882.	2.4	75
88	Meeting the challenge of interacting threats in freshwater ecosystems: A call to scientists and managers. Elementa, 2017, 5, .	1.1	75
89	Why do we fly? Ecologists' sins of emission. Frontiers in Ecology and the Environment, 2009, 7, 294-296.	1.9	74
90	Latent Extinction and Invasion Risk of Crayfishes in the Southeastern United States. Conservation Biology, 2010, 24, 1099-1110.	2.4	74

#	Article	IF	CITATIONS
91	A broad framework to organize and compare ecological invasion impacts. Environmental Research, 2011, 111, 899-908.	3.7	74
92	Effects of Climate Change, Invasive Species, and Disease on the Distribution of Native European Crayfishes. Conservation Biology, 2013, 27, 731-740.	2.4	72
93	REDISCOVERING THE SPECIES IN COMMUNITY-WIDE PREDICTIVE MODELING. , 2006, 16, 1449-1460.		71
94	Confronting the risks of large-scale invasive species control. Nature Ecology and Evolution, 2017, 1, 172.	3.4	71
95	Multidecadal responses of native and introduced fishes to natural and altered flow regimes in the American Southwest. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 554-564.	0.7	67
96	Declining streamflow induces collapse and replacement of native fish in the American Southwest. Frontiers in Ecology and the Environment, 2016, 14, 465-472.	1.9	67
97	Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species. PLoS ONE, 2013, 8, e77415.	1.1	67
98	Can dams be designed for sustainability?. Science, 2017, 358, 1252-1253.	6.0	65
99	Cross-correlation bias in lag analysis of aquatic time series. Marine Biology, 2001, 138, 1063-1070.	0.7	63
100	Smallmouth Bass in the Pacific Northwest: A Threat to Native Species; a Benefit for Anglers. Reviews in Fisheries Science, 2011, 19, 305-315.	2.1	63
101	Tracking the pulse of the Earth's fresh waters. Nature Sustainability, 2018, 1, 198-203.	11.5	63
102	Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1436.	2.8	63
103	Practical Science Communication Strategies for Graduate Students. Conservation Biology, 2014, 28, 1225-1235.	2.4	62
104	Heads you win, tails you lose: Lifeâ€history traits predict invasion and extinction risk of the world's freshwater fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, 27, 773-779.	0.9	62
105	National parks as protected areas for U.S. freshwater fish diversity. Conservation Letters, 2011, 4, 364-371.	2.8	61
106	The State of Crayfish in the Pacific Northwest. Fisheries, 2011, 36, 60-73.	0.6	60
107	A global assessment of freshwater fish introductions in mediterranean-climate regions. Hydrobiologia, 2013, 719, 317-329.	1.0	60
108	Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nature Sustainability, 2018, 1, 176-183.	11.5	59

#	Article	IF	CITATIONS
109	Species invasions threaten the antiquity of China's freshwater fish fauna. Diversity and Distributions, 2017, 23, 556-566.	1.9	58
110	Environment and predation govern fish community assembly in temperate streams. Global Ecology and Biogeography, 2016, 25, 1194-1205.	2.7	54
111	Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. Geophysical Research Letters, 2021, 48, e2020GL090794.	1.5	54
112	Threshold responses of riverine fish communities to land use conversion across regions of the world. Global Change Biology, 2020, 26, 4952-4965.	4.2	53
113	Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200777.	1.2	52
114	Forecasting the Spread of Invasive Rainbow Smelt in the Laurentian Great Lakes Region of North America. Conservation Biology, 2006, 20, 1740-1749.	2.4	51
115	Linking river flow regimes to riparian plant guilds: a communityâ€wide modeling approach. Ecological Applications, 2017, 27, 1338-1350.	1.8	51
116	Evidence for dispersal syndromes in freshwater fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172214.	1.2	51
117	Assessing placement bias of the global river gauge network. Nature Sustainability, 2022, 5, 586-592.	11.5	51
118	Decoupled conservatism of Grinnellian and Eltonian niches in an invasive arthropod. Ecosphere, 2010, 1, 1-13.	1.0	50
119	The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of <i>Pacifastacus leniusculus</i> . Freshwater Biology, 2012, 57, 1823-1838.	1.2	49
120	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	1.2	49
121	Climate and land-use changes interact to drive long-term reorganization of riverine fish communities globally. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
122	Twentyâ€five essential research questions to inform the protection and restoration of freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2632-2653.	0.9	49
123	The Human Dimensions of Biotic Homogenization. Conservation Biology, 2005, 19, 2036-2038.	2.4	48
124	Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 2021, 16, 084033.	2.2	47
125	Integrated assessment of biological invasions. Ecological Applications, 2014, 24, 25-37.	1.8	46
126	The geography of metapopulation synchrony in dendritic river networks. Ecology Letters, 2021, 24, 791-801.	3.0	46

#	Article	IF	CITATIONS
127	Distribution and community-level effects of the Chinese mystery snail (Bellamya chinensis) in northern Wisconsin lakes. Biological Invasions, 2010, 12, 1591-1605.	1.2	45
128	Safeguarding migratory fish via strategic planning of future small hydropower in Brazil. Nature Sustainability, 2021, 4, 409-416.	11.5	45
129	Integrating landscape connectivity and habitat suitability to guide offensive and defensive invasive species management. Journal of Applied Ecology, 2015, 52, 366-378.	1.9	44
130	Challenges and opportunities for fish conservation in dam-impacted waters. , 2015, , 107-148.		44
131	Past, present, and future of ecological integrity assessment for fresh waters. Frontiers in Ecology and the Environment, 2017, 15, 197-205.	1.9	44
132	Using avatar species to model the potential distribution of emerging invaders. Global Ecology and Biogeography, 2012, 21, 1114-1125.	2.7	43
133	Evaluating transferability of flow–ecology relationships across space, time and taxonomy. Freshwater Biology, 2018, 63, 817-830.	1.2	43
134	Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. Diversity and Distributions, 2007, 13, 458-466.	1.9	42
135	Case studies in co-benefits approaches to climate change mitigation and adaptation. Journal of Environmental Planning and Management, 2017, 60, 647-667.	2.4	42
136	Modeling intrinsic potential for beaver (Castor canadensis) habitat to inform restoration and climate change adaptation. PLoS ONE, 2018, 13, e0192538.	1.1	42
137	Assessing ecosystem vulnerability to invasive rusty crayfish (Orconectes rusticus). , 2011, 21, 2587-2599.		41
138	Clobal Salmonidae introductions reveal stronger ecological effects of changing intraspecific compared to interspecific diversity. Ecology Letters, 2016, 19, 1363-1371.	3.0	41
139	Freshwaters in the Public Eye: Understanding the Role of Images and Media in Aquatic Conservation. Fisheries, 2009, 34, 581-585.	0.6	40
140	Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 91-102.	0.9	40
141	Costs of living for juvenile Chinook salmon (<i>Oncorhynchus tshawytscha</i>) in an increasingly warming and invaded world. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1621-1630.	0.7	39
142	Quantifying flow–ecology relationships with functional linear models. Hydrological Sciences Journal, 2014, 59, 629-644.	1.2	38
143	River ecosystem conceptual models and nonâ€perennial rivers: A critical review. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1473.	2.8	37
144	Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts?. NeoBiota, 0, 22, 1-22.	1.0	37

#	Article	IF	CITATIONS
145	Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians. Ecology, 2015, 96, 1371-1382.	1.5	36
146	Response diversity, nonnative species, and disassembly rules buffer freshwater ecosystem processes from anthropogenic change. Global Change Biology, 2017, 23, 1871-1880.	4.2	36
147	Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate. BioScience, 2011, 61, 713-719.	2.2	35
148	Fish dispersal in flowing waters: A synthesis of movement―and geneticâ€based studies. Fish and Fisheries, 2018, 19, 1063-1077.	2.7	35
149	Online auction marketplaces as a global pathway for aquatic invasive species. Hydrobiologia, 2021, 848, 1967-1979.	1.0	34
150	Crayfish occupancy and abundance in lakes of the Pacific Northwest, USA. Freshwater Science, 2013, 32, 94-107.	0.9	33
151	Resource partitioning and functional diversity of worldwide freshwater fish communities. Ecosphere, 2016, 7, e01356.	1.0	33
152	Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast. Global Change Biology, 2018, 24, 1175-1185.	4.2	33
153	Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. Science of the Total Environment, 2021, 770, 145318.	3.9	33
154	Comparison of trophic function between the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii. Limnology, 2017, 18, 275-286.	0.8	32
155	Designing flow regimes to support entire river ecosystems. Frontiers in Ecology and the Environment, 2021, 19, 326-333.	1.9	32
156	Home-field advantage: native signal crayfish (Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese mystery snail (Bellamya chinensis). Aquatic Ecology, 2009, 43, 1073-1084.	0.7	31
157	Nonâ€native species promote trophic dispersion of food webs. Frontiers in Ecology and the Environment, 2012, 10, 406-408.	1.9	31
158	Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia, 2017, 184, 453-467.	0.9	31
159	Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180915.	1.2	31
160	Spatiotemporal patterns and habitat associations of smallmouth bass (<i>Micropterus dolomieu</i>) invading salmonâ€rearing habitat. Freshwater Biology, 2012, 57, 1929-1946.	1.2	30
161	Forecasting the Vulnerability of Lakes to Aquatic Plant Invasions. Invasive Plant Science and Management, 2014, 7, 32-45.	0.5	30

162 Conservation of migratory fishes in freshwater ecosystems. , 2015, , 324-360.

30

#	Article	IF	CITATIONS
163	An invader in salmonid rearing habitat: current and future distributions of smallmouth bass (<i>Micropterus dolomieu</i>) in the Columbia River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 314-325.	0.7	30
164	The varying role of population abundance in structuring indices of biotic homogenization. Journal of Biogeography, 2008, 35, 884-892.	1.4	29
165	Coupling virtual watersheds with ecosystem services assessment: a 21st century platform to support river research and management. Wiley Interdisciplinary Reviews: Water, 2015, 2, 609-621.	2.8	29
166	Traitâ€based ecology of fishes: A quantitative assessment of literature trends and knowledge gaps using topic modelling. Fish and Fisheries, 2019, 20, 1100-1110.	2.7	29
167	Phylogenetic species delimitation for crayfishes of the genus <i>Pacifastacus</i> . PeerJ, 2016, 4, e1915.	0.9	29
168	Prey naivety in the behavioural responses of juvenile Chinook salmon (<i>Oncorhynchus) Tj ETQq0 0 0 rgBT /Ov</i>	erlock 10 1.2	Tf 50 542 Td (
169	Individualâ€based models forecast the spread and inform the management of an emerging riverine invader. Diversity and Distributions, 2018, 24, 1816-1829.	1.9	28
170	Incentivizing the Public to Support Invasive Species Management: Eurasian Milfoil Reduces Lakefront Property Values. PLoS ONE, 2014, 9, e110458.	1.1	28
171	RivFishTIME: A global database of fish timeâ€series to study global change ecology in riverine systems. Global Ecology and Biogeography, 2021, 30, 38-50.	2.7	27
172	Lifeâ€stageâ€specific physiology defines invasion extent of a riverine fish. Journal of Animal Ecology, 2015, 84, 879-888.	1.3	26
173	Increasing drought favors nonnative fishes in a dryland river: evidence from a multispecies demographic model. Ecosphere, 2019, 10, e02681.	1.0	26
174	Multiâ€ŧrophic impacts of an invasive aquatic plant. Freshwater Biology, 2016, 61, 1846-1861.	1.2	25
175	Longitudinal variability in lateral hydrologic connectivity shapes fish occurrence in temporary floodplain ponds. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 319-328.	0.7	25
176	Effects of nonnative species on the stability of riverine fish communities. Ecography, 2020, 43, 1156-1166.	2.1	24
177	Current and projected future risks of freshwater fish invasions in China. Ecography, 2019, 42, 2074-2083.	2.1	23
178	What are the effects of flow-regime changes on fish productivity in temperate regions? A systematic map. Environmental Evidence, 2020, 9, .	1.1	22
179	Assessing longâ€ŧerm fish responses and shortâ€ŧerm solutions to flow regulation in a dryland river basin. Ecology of Freshwater Fish, 2015, 24, 56-66.	0.7	21
180	Genetic Differentiation, Isolation-by-Distance, and Metapopulation Dynamics of the Arizona Treefrog (Hyla wrightorum) in an Isolated Portion of Its Range. PLoS ONE, 2016, 11, e0160655.	1.1	21

#	Article	IF	CITATIONS
181	Beaver dams shift desert fish assemblages toward dominance by nonâ€native species (Verde River,) Tj ETQq1 1 (0.784314 0.7	rgBT/Overlo 20
182	Phenotypic variability of rusty crayfish (<i>Faxonius rusticus</i>) at the leading edge of its riverine invasion. Freshwater Biology, 2019, 64, 1196-1209.	1.2	20
183	Invaders induce coordinated isotopic niche shifts in native fish species. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1348-1358.	0.7	20
184	Behavioural and growth differences between experienced and naÃ ⁻ ve populations of a native crayfish in the presence of invasive rusty crayfish. Freshwater Biology, 2009, 54, 1876-1887.	1.2	19
185	Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on Efficiency and Policy Measures. PLoS ONE, 2012, 7, e50219.	1.1	19
186	Nonâ€native Chinese mystery snail (<i>Bellamya chinensis</i>) supports consumers in urban lake food webs. Ecosphere, 2016, 7, e01293.	1.0	19
187	Global test of Eltonian niche conservatism of nonnative freshwater fish species between their native and introduced ranges. Ecography, 2017, 40, 384-392.	2.1	19
188	Models of Ecological Responses to Flow Regime Change to Inform Environmental Flows Assessments. , 2017, , 287-316.		19
189	Importance of harvestâ€driven trait changes for invasive species management. Frontiers in Ecology and the Environment, 2018, 16, 317-318.	1.9	19
190	Dynamic contributions of intermittent and perennial streams to fish beta diversity in dryland rivers. Journal of Biogeography, 2019, 46, 2311-2322.	1.4	19
191	Riparian land use and in-channel stressors drive fish community structure in the Yangtze River. Landscape Ecology, 2021, 36, 3079-3095.	1.9	19
192	Ecology and Conservation of Mudminnow Species Worldwide. Fisheries, 2014, 39, 341-351.	0.6	18
193	There's more to Fish than Just Food: Exploring the Diverse Ways that Fish Contribute to Human Society. Fisheries, 2020, 45, 453-464.	0.6	18
194	Toward Improved Understanding of Streamflow Effects on Freshwater Fishes. Fisheries, 2022, 47, 290-298.	0.6	18
195	Small artificial impoundments have big implications for hydrology and freshwater biodiversity. Frontiers in Ecology and the Environment, 2022, 20, 141-146.	1.9	18
196	Critical threshold effects of benthiscape structure on stream herbivore movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 461-472.	1.8	17
197	Human development modifies the functional composition of lake littoral invertebrate communities. Hydrobiologia, 2016, 775, 167-184.	1.0	17
198	Thermal landscapes in a changing climate: biological implications of water temperature patterns in an extreme year. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1740-1756.	0.7	17

#	Article	IF	CITATIONS
199	Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia, 2020, 847, 3727-3741.	1.0	17
200	Scale-dependent patterns of fish faunal homogenization in Neotropical reservoirs. Hydrobiologia, 2020, 847, 3759-3772.	1.0	17
201	Preface: aquatic homogenocene—understanding the era of biological re-shuffling in aquatic ecosystems. Hydrobiologia, 2020, 847, 3705-3709.	1.0	17
202	Negative impacts of mining on Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .	0.5	17
203	Mechanistic invasive species management models and their application in conservation. Conservation Science and Practice, 2021, 3, e533.	0.9	17
204	First record of Orconectes rusticus (Girard, 1852) (Decapoda, Cambaridae) west of the Great Continental Divide in North America. Crustaceana, 2009, 82, 1347-1351.	0.1	16
205	Hydrology drives seasonal variation in dryland stream macroinvertebrate communities. Aquatic Sciences, 2017, 79, 705-717.	0.6	16
206	Drivers and interrelationships among multiple dimensions of rarity for freshwater fishes. Ecography, 2018, 41, 331-344.	2.1	16
207	Climate Change Effects on North American Fish and Fisheries to Inform Adaptation Strategies. Fisheries, 2021, 46, 449-464.	0.6	16
208	Applying assessments of adaptive capacity to inform naturalâ€resource management in a changing climate. Conservation Biology, 2022, 36, .	2.4	16
209	Spatial Scaling of Non-Native Fish Richness across the United States. PLoS ONE, 2014, 9, e97727.	1.1	15
210	Use of environmental DNA to detect the invasive aquatic plants <i>Myriophyllum spicatum</i> and <i>Egeria densa</i> in lakes. Freshwater Science, 2020, 39, 521-533.	0.9	15
211	Why are freshwater fish so threatened?. , 2015, , 37-75.		14
212	Multiple stressor effects on freshwater fish: a review and meta-analysis. , 2015, , 178-214.		14
213	Food Web Theory and Ecological Restoration. , 2016, , 301-329.		13
214	Does a bigger mouth make you fatter? Linking intraspecific gape variability to body condition of a tropical predatory fish. Oecologia, 2019, 191, 579-585.	0.9	13
215	Are domesticated freshwater fish an underappreciated culprit of ecosystem change?. Fish and Fisheries, 2020, 21, 1253-1258.	2.7	13
216	Forecasted range shifts of arid-land fishes in response to climate change. Reviews in Fish Biology and Fisheries, 2017, 27, 463-479.	2.4	12

#	Article	IF	CITATIONS
217	Connectivity, habitat, and flow regime influence fish assemblage structure: Implications for environmental water management in a perennial river of the wet–dry tropics of northern Australia. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1397-1411.	0.9	12
218	Widespread Distribution of the Non-Native Northern Crayfish (<i>Orconectes virilis</i>) in the Columbia River Basin. Northwest Science, 2010, 84, 108-111.	0.1	11
219	Fish species introductions provide novel insights into the patterns and drivers of phylogenetic structure in freshwaters. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133003.	1.2	11
220	Generalized "avatar―niche shifts improve distribution models for invasive species. Diversity and Distributions, 2014, 20, 1296-1306.	1.9	11
221	Phenotypic Shifts in Life History Traits Influence Invasion Success of Goldfish in the Yarlung Tsangpo River, Tibet. Transactions of the American Fisheries Society, 2015, 144, 602-609.	0.6	11
222	Spatiotemporal Spawning Patterns of Smallmouth Bass at Its Upstream Invasion Edge. Transactions of the American Fisheries Society, 2016, 145, 693-702.	0.6	11
223	Small instream infrastructure: Comparative methods and evidence of environmental and ecological responses. Ecological Solutions and Evidence, 2020, 1, e12026.	0.8	11
224	Detecting Montane Flowering Phenology with CubeSat Imagery. Remote Sensing, 2020, 12, 2894.	1.8	11
225	The Future of Legislation, Policy, Risk Analysis, and Management of Non-Native Freshwater Fishes in China. Reviews in Fisheries Science and Aquaculture, 2021, 29, 149-166.	5.1	11
226	Multi-scale threat assessment of riverine ecosystems in the Colorado River Basin. Ecological Indicators, 2022, 138, 108840.	2.6	11
227	Identifying Preservation and Restoration Priority Areas for Desert Fishes in an Increasingly Invaded World. Environmental Management, 2013, 51, 631-641.	1.2	10
228	Climate change effects on freshwater fishes, conservation and management. , 2015, , 76-106.		10
229	Non-indigenous fishes and their role in freshwater fish imperilment. , 2015, , 238-269.		10
230	Understanding the Nexus Between Hydrological Alteration And Biological Invasions. , 2019, , 45-64.		10
231	Science Gets Up to Speed on Dry Rivers. Eos, 2020, 101, .	0.1	10
232	Modeling the freshwater ecological response to changes in flow and thermal regimes influenced by reservoir dynamics. Journal of Hydrology, 2022, 608, 127591.	2.3	10
233	Environmental Drivers of Occupancy and Detection of Olympic Mudminnow. Transactions of the American Fisheries Society, 2016, 145, 17-26.	0.6	9
234	Size-dependent foraging niches of European Perch Perca fluviatilis (Linnaeus, 1758) and North American Yellow Perch Perca flavescens (Mitchill, 1814). Environmental Biology of Fishes, 2018, 101, 23-37.	0.4	9

#	Article	IF	CITATIONS
235	Traits-based approaches support the conservation relevance of landscape genetics. Conservation Genetics, 2018, 19, 17-26.	0.8	8
236	Trends and Knowledge Gaps in the Study of Nature-Based Participation by Latinos in the United States. International Journal of Environmental Research and Public Health, 2018, 15, 1287.	1.2	8
237	Threats to Rearing Juvenile Chinook Salmon from Nonnative Smallmouth Bass Inferred from Stable Isotope and Fatty Acid Biomarkers. Transactions of the American Fisheries Society, 2020, 149, 350-363.	0.6	8
238	Coâ€development of a risk assessment strategy for managed relocation. Ecological Solutions and Evidence, 2021, 2, e12092.	0.8	8
239	Links between two interacting factors, novel habitats and non-native predators, and aquatic invertebrate communities in a dryland environment. Hydrobiologia, 2015, 746, 313-326.	1.0	7
240	Nonâ€native introductions influence fish body size distributions within a dryland river. Ecosphere, 2016, 7, e01615.	1.0	7
241	Looking to the past to ensure the future of the world's oldest living vertebrate: Isotopic evidence for multiâ€decadal shifts in trophic ecology of the Australian lungfish. River Research and Applications, 2019, 35, 1629-1639.	0.7	7
242	Development of a quantitative PCR assay for detecting Egeria densa in environmental DNA samples. Conservation Genetics Resources, 2020, 12, 545-548.	0.4	7
243	Stewardship and management of freshwater ecosystems: From Leopold's land ethic to a freshwater ethic. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1499-1511.	0.9	7
244	How do changes in flow magnitude due to hydropower operations affect fish abundance and biomass in temperate regions? A systematic review. Environmental Evidence, 2022, 11, 3.	1.1	7
245	Dam Construction Impacts Fish Biodiversity in a Subtropical River Network, China. Diversity, 2022, 14, 476.	0.7	6
246	Substantial intraspecific trait variation across a hydrological gradient in northern Australian fishes. Ecosphere, 2022, 13, .	1.0	6
247	Knowledge Exchange and Social Capital for Freshwater Ecosystem Assessments. BioScience, 2020, 70, 174-183.	2.2	5
248	Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology, 2021, 14, e2282.	1.1	5
249	A bobber's perspective on angler-driven vectors of invasive species transmission. NeoBiota, 0, 60, 97-115.	1.0	5
250	Freshwater conservation planning. , 2015, , 437-466.		4
251	Understanding and conserving genetic diversity in a world dominated by alien introductions and native transfers: the case study of primary and peripheral freshwater fishes in southern Europe. , 2015, , 506-534.		4
252	Comparing opportunistic and strategic removal efforts to manage invasive fish species using a dynamic multiâ€state occupancy model. Journal of Applied Ecology, 2021, 58, 2797-2809.	1.9	4

#	Article	IF	CITATIONS
253	Invasive Species in Streams and Rivers. , 2022, , 436-452.		4
254	What's in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water (Switzerland), 2020, 12, 1980.	1.2	4
255	Estimating the effects of nonâ€native species on nutrient recycling using speciesâ€specific and general allometric models. Freshwater Biology, 2018, 63, 539-552.	1.2	3
256	Importance of neutral processes varies in time and space: Evidence from dryland stream ecosystems. PLoS ONE, 2017, 12, e0176949.	1.1	3
257	Growth and Recruitment of Nonnative Smallmouth Bass along the Upstream Edge of Its Riverine Distribution. Northwest Science, 2019, 93, 1.	0.1	3
258	Assessment of Introduced Prickly Sculpin Populations in Mountain Lakes in Two Areas of Western Washington State. Northwest Science, 2015, 89, 1-13.	0.1	2
259	Military Flights Threaten the Wilderness Soundscapes of the Olympic Peninsula, Washington. Northwest Science, 2020, 94, .	0.1	2
260	Trophic Ecology of Olympic Mudminnow (Novumbra hubbsi) in Lake Ozette, Washington. Northwest Science, 2018, 92, 267.	0.1	2
261	RESPONSE OF MIGRATORY SCULPIN POPULATIONS TO BARRIER REMOVAL IN FOUR SMALL LOWLAND URBAN STREAMS IN THE LAKE WASHINGTON BASIN. , 2020, 101, 111.		2
262	Twenty year contrast of non-native parrotfeather distribution and abundance in an unregulated river. Hydrobiologia, 0, , 1.	1.0	2
263	Courseâ€based undergraduate research to advance environmental education, science, and resource management. Frontiers in Ecology and the Environment, 0, , .	1.9	2
264	Synthesis $\hat{a} \in $ what is the future of freshwater fishes?. , 2015, , 563-572.		1
265	A stakeholderâ€supported conservation assessment for a dataâ€limited species: Olympic mudminnow () Tj ETQq	1 1 0.784	4314 rgBT /0 1
266	Perceptions of a curriculum vitae clinic for conservation science students. Conservation Science and Practice, 2019, 1, e37.	0.9	0
267	River ecosystem conceptual models and non-perennial rivers: A critical review. Wiley Interdisciplinary Reviews: Water, 2020, 7, .	2.8	0
268	Seasonal Catch Rates of the Endemic Olympic Mudminnow in Wetland Habitat. Northwest Science, 2022, 95, .	0.1	0