Pedro Jordano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206819/publications.pdf

Version: 2024-02-01

193 papers 26,874 citations

76 h-index 153 g-index

212 all docs $\begin{array}{c} 212 \\ \text{docs citations} \end{array}$

212 times ranked

15848 citing authors

#	Article	IF	CITATIONS
1	Methodological overview and dataâ€merging approaches in the study of plant–frugivore interactions. Oikos, 2022, 2022, .	1.2	27
2	Phylogenetic congruence between Neotropical primates and plants is driven by frugivory. Ecology Letters, 2022, 25, 320-329.	3.0	14
3	Assessing short and longâ€ŧerm variations in diversity, timing and body condition of frugivorous birds. Oikos, 2022, 2022, .	1.2	8
4	The individualâ€based network structure of palmâ€seed dispersers is explained by a rainforest gradient. Oikos, 2022, 2022, .	1.2	5
5	The ecological and evolutionary significance of effectiveness landscapes in mutualistic interactions. Ecology Letters, 2022, 25, 264-277.	3.0	7
6	Drivers of individualâ€based, antagonistic interaction networks during plant range expansion. Journal of Ecology, 2022, 110, 2190-2204.	1.9	8
7	Extant fruitâ€eating birds promote genetically diverse seed rain, but disperse to fewer sites in defaunated tropical forests. Journal of Ecology, 2021, 109, 1055-1067.	1.9	10
8	Large herbivores regulate the spatial recruitment of a hyperdominant Neotropical palm. Biotropica, 2021, 53, 286-295.	0.8	5
9	Species-area and network-area relationships in host–helminth interactions. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203143.	1.2	9
10	Individualâ€based plant–pollinator networks are structured by phenotypic and microsite plant traits. Journal of Ecology, 2021, 109, 2832-2844.	1.9	19
11	Limited potential for bird migration to disperse plants to cooler latitudes. Nature, 2021, 595, 75-79.	13.7	44
12	In remembrance of Victor Rico Gray (1951â€2021): An astonishing tropical ecologist. Biotropica, 2021, 53, 1238-1243.	0.8	0
13	Within-Species Trait Variation Can Lead to Size Limitations in Seed Dispersal of Small-Fruited Plants. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
14	Spatial variation in species' roles in hostâ€"helminth networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200361.	1.8	6
15	Fineâ€scale coexistence between Mediterranean mesocarnivores is mediated by spatial, temporal, and trophic resource partitioning. Ecology and Evolution, 2021, 11, 15520-15533.	0.8	12
16	The cryptic regulation of diversity by functionally complementary large tropical forest herbivores. Journal of Ecology, 2020, 108, 279-290.	1.9	30
17	Fruit resource provisioning for avian frugivores: The overlooked side of effectiveness in seed dispersal mutualisms. Journal of Ecology, 2020, 108, 1358-1372.	1.9	17
18	Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica, 2020, 52, 81-89.	0.8	38

#	Article	IF	Citations
19	Interaction motifs variability in a Mediterranean palm under environmental disturbances: the mutualism–antagonism continuum. Oikos, 2020, 129, 367-379.	1.2	14
20	Genetic correlations and ecological networks shape coevolving mutualisms. Ecology Letters, 2020, 23, 1789-1799.	3.0	13
21	Ants as diaspore removers of nonâ€myrmecochorous plants: a metaâ€analysis. Oikos, 2020, 129, 775-786.	1.2	24
22	Rethinking megafauna. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192643.	1.2	35
23	The timing of frugivoreâ€mediated seed dispersal effectiveness. Molecular Ecology, 2019, 28, 219-231.	2.0	35
24	Seed dispersal by dispersing juvenile animals: a source of functional connectivity in fragmented landscapes. Biology Letters, 2019, 15, 20190264.	1.0	13
25	Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. Science Advances, 2019, 5, eaav6699.	4.7	38
26	The scale of landscape effect on seed dispersal depends on both response variables and landscape predictor. Landscape Ecology, 2019, 34, 1069-1080.	1.9	31
27	Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports, 2019, 9, 4711.	1.6	140
28	The influence of spatial sampling scales on ant–plant interaction network architecture. Journal of Animal Ecology, 2019, 88, 903-914.	1.3	25
29	Seeing the forest for the trees: Putting multilayer networks to work for community ecology. Functional Ecology, 2019, 33, 206-217.	1.7	57
30	Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biological Reviews, 2019, 94, 874-902.	4.7	117
31	Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conservation Letters, 2018, 11, e12454.	2.8	59
32	Contextâ€dependency and anthropogenic effects on individual plant–frugivore networks. Oikos, 2018, 127, 1045-1059.	1.2	25
33	Seedâ€dispersal interactions in fragmented landscapes – a metanetwork approach. Ecology Letters, 2018, 21, 484-493.	3.0	115
34	Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant–frugivore networks. Journal of Animal Ecology, 2018, 87, 995-1007.	1.3	71
35	Drivers of tree fecundity in pedunculate oak (<i>Quercus robur</i>) refugial populations at the species' southwestern range margin. Plant Biology, 2018, 20, 195-202.	1.8	4
36	Pleistocene megafaunal extinctions and the functional loss of longâ€distance seedâ€dispersal services. Ecography, 2018, 41, 153-163.	2.1	118

#	Article	IF	CITATIONS
37	Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews, 2018, 93, 845-862.	4.7	183
38	Persisting in defaunated landscapes: Reduced plant population connectivity after seed dispersal collapse. Journal of Ecology, 2018, 106, 936-947.	1.9	34
39	Global geographic patterns in the colours and sizes of animalâ€dispersed fruits. Global Ecology and Biogeography, 2018, 27, 1339-1351.	2.7	36
40	Functional consequences of plantâ€animal interactions along the mutualismâ€antagonism gradient. Ecology, 2017, 98, 1266-1276.	1.5	37
41	Unravelling seed dispersal through fragmented landscapes: Frugivore species operate unevenly as mobile links. Molecular Ecology, 2017, 26, 4309-4321.	2.0	87
42	Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society, 2017, 122, 71-83.	0.7	72
43	A general framework for effectiveness concepts in mutualisms. Ecology Letters, 2017, 20, 577-590.	3.0	146
44	Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic Forest. Ecology, 2017, 98, 1729-1729.	1.5	89
45	Dispersal processes driving plant movement: challenges for understanding and predicting range shifts in a changing world. Journal of Ecology, 2017, 105, 1-5.	1.9	30
46	What is longâ€distance dispersal? And a taxonomy of dispersal events. Journal of Ecology, 2017, 105, 75-84.	1.9	134
47	Plant-animal mutualism effectiveness in native and transformed habitats: Assessing the coupled outcomes of pollination and seed dispersal. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 28, 87-95.	1.1	21
48	Indirect effects drive coevolution in mutualistic networks. Nature, 2017, 550, 511-514.	13.7	215
49	Individual variation in the booming calls of captive Horned Guans (<i>Oreophasis derbianus</i>): an endangered Neotropical mountain bird. Bioacoustics, 2017, 26, 185-198.	0.7	5
50	Diet and Feeding Behavior of the Horned Guan (Oreophasis derbianus) In Mexico. Wilson Journal of Ornithology, 2017, 129, 771.	0.1	0
51	Chasing Ecological Interactions. PLoS Biology, 2016, 14, e1002559.	2.6	83
52	Unusually limited pollen dispersal and connectivity of <scp>P</scp> edunculate oak (<i>Quercus) Tj ETQq0 0 0 r 3319-3331.</i>	gBT /Over 2.0	lock 10 Tf 50 37
53	The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Scientific Reports, 2016, 6, 24820.	1.6	110
54	Defaunation leads to microevolutionary changes in a tropical palm. Scientific Reports, 2016, 6, 31957.	1.6	48

#	Article	IF	Citations
55	Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161564.	1.2	54
56	Sampling networks of ecological interactions. Functional Ecology, 2016, 30, 1883-1893.	1.7	218
57	Natural history matters: how biological constraints shape diversified interactions in pollination networks. Journal of Animal Ecology, 2016, 85, 1423-1426.	1.3	9
58	Isolation of 91 polymorphic microsatellite loci in the western Mediterranean endemic <i>Carex helodes</i> (Cyperaceae). Applications in Plant Sciences, 2016, 4, 1500085.	0.8	4
59	Variation in seed dispersal effectiveness: the redundancy of consequences in diversified tropical frugivore assemblages. Oikos, 2016, 125, 336-342.	1.2	68
60	Morphology predicts species' functional roles and their degree of specialization in plant–frugivore interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152444.	1.2	164
61	Scaleâ€dependent responses of pollination and seed dispersal mutualisms in a habitat transformation scenario. Journal of Ecology, 2015, 103, 1334-1343.	1.9	36
62	Defaunation affects carbon storage in tropical forests. Science Advances, 2015, 1, e1501105.	4.7	285
63	Geographical variation in mutualistic networks: similarity, turnover and partner fidelity. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142925.	1.2	129
64	Downsized mutualisms: Consequences of seed dispersers' body-size reduction for early plant recruitment. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 151-159.	1.1	59
65	Hotspots of damage by antagonists shape the spatial structure of plant–pollinator interactions. Ecology, 2015, 96, 2181-2191.	1.5	11
66	Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 2015, 29, 299-307.	1.7	619
67	Community-Wide Spatial and Temporal Discordances of Seed-Seedling Shadows in a Tropical Rainforest. PLoS ONE, 2015, 10, e0123346.	1.1	10
68	Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytologist, 2014, 201, 678-686.	3.5	47
69	Longâ€ŧerm expansion of juniper populations in managed landscapes: patterns in space and time. Journal of Ecology, 2014, 102, 1562-1571.	1.9	23
70	Biotic Interactions as Nature's Ornaments: A View from the Tropics. BioScience, 2014, 64, 630-631.	2.2	1
71	Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Global Ecology and Biogeography, 2014, 23, 1085-1093.	2.7	129
72	Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132516.	1.2	65

#	Article	IF	Citations
73	Who dispersed the seeds? The use of <scp>DNA</scp> barcoding in frugivory and seed dispersal studies. Methods in Ecology and Evolution, 2014, 5, 806-814.	2.2	82
74	Fruits and frugivory , 2014, , 18-61.		63
75	Impact of the introduced honeybees (Apis mellifera, Apidae) on Teide National Park (Tenerife, Canary) Tj ETQq1 1	0,784314	4 rgBT /Overl
76	Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, 2013, 3, 2958-2975.	0.8	424
77	COEVOLUTION AND THE ARCHITECTURE OF MUTUALISTIC NETWORKS. Evolution; International Journal of Organic Evolution, 2013, 67, 338-354.	1.1	115
78	Quantity and quality components of effectiveness in insular pollinator assemblages. Oecologia, 2013, 173, 179-190.	0.9	36
79	Demographic bottlenecks in tropical plant regeneration: A comparative analysis of causal influences. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 86-96.	1.1	33
80	Functional Extinction of Birds Drives Rapid Evolutionary Changes in Seed Size. Science, 2013, 340, 1086-1090.	6.0	560
81	X Reuni $ ilde{A}^3$ n anual de Ecoflor. Ecosistemas, 2013, 22, 125-125.	0.2	O
82	The Structure of Plant-Animal Mutualistic Networks. , 2013, , .		8
83	Metaâ€Analysis of the Effects of Human Disturbance on Seed Dispersal by Animals. Conservation Biology, 2012, 26, 1072-1081.	2.4	213
84	Cleaning associations between birds and herbivorous mammals in Brazil: Structure and complexity. Auk, 2012, 129, 36-43.	0.7	22
85	Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. Advances in Ecological Research, 2012, 46, 89-210.	1.4	284
86	The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions. PLoS ONE, 2011, 6, e17395.	1.1	116
87	Megagardeners of the forest – the role of elephants in seed dispersal. Acta Oecologica, 2011, 37, 542-553.	0.5	240
88	Frugivory and seed dispersal by hornbills (Bucerotidae) in tropical forests. Acta Oecologica, 2011, 37, 531-541.	0.5	55
89	A brief history of fruits and frugivores. Acta Oecologica, 2011, 37, 521-530.	0.5	130
90	Importance of earthworm–seed interactions for the composition and structure of plant communities: A review. Acta Oecologica, 2011, 37, 594-603.	0.5	88

#	Article	IF	CITATIONS
91	Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees. Acta Oecologica, 2011, 37, 578-586.	0.5	51
92	Biological invasions and the study of vertebrate dispersal of plants: Opportunities and integration. Acta Oecologica, 2011, 37, 650-656.	0.5	28
93	Why fruits go to the dark side. Acta Oecologica, 2011, 37, 604-610.	0.5	32
94	Molecular insights into seed dispersal mutualisms driving plant population recruitment. Acta Oecologica, 2011, 37, 632-640.	0.5	36
95	Plants on the move: The role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecologica, 2011, 37, 666-673.	0.5	110
96	Cache placement, pilfering, and a recovery advantage in a seed-dispersing rodent: Could predation of scatter hoarders contribute to seedling establishment?. Acta Oecologica, 2011, 37, 554-560.	0.5	53
97	Using population genetic analyses to understand seed dispersal patterns. Acta Oecologica, 2011, 37, 641-649.	0.5	68
98	Dispersal syndrome differentiation of Pinus armandii in Southwest China: Key elements of a potential selection mosaic. Acta Oecologica, 2011, 37, 587-593.	0.5	9
99	When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecologica, 2011, 37, 611-618.	0.5	25
100	Seed dispersal by fishes in tropical and temperate fresh waters: The growing evidence. Acta Oecologica, 2011, 37, 561-577.	0.5	110
101	Persistence and spread in a new landscape: Dispersal ecology and genetics of Miconia invasions in Australia. Acta Oecologica, 2011, 37, 657-665.	0.5	17
102	The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers. Acta Oecologica, 2011, 37, 625-631.	0.5	49
103	Network models of frugivory and seed dispersal: Challenges and opportunities. Acta Oecologica, 2011, 37, 619-624.	0.5	57
104	Frugivores and seed dispersal (1985–2010); the â€~seeds' dispersed, established and matured. Acta Oecologica, 2011, 37, 517-520.	0.5	25
105	Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 725-732.	1.2	256
106	The Functional Consequences of Mutualistic Network Architecture. PLoS ONE, 2011, 6, e16143.	1.1	66
107	Colour, design and reward: phenotypic integration of fleshy fruit displays. Journal of Evolutionary Biology, 2011, 24, 751-760.	0.8	93
108	Evolution and coevolution in mutualistic networks. Ecology Letters, 2011, 14, 877-885.	3.0	256

#	Article	IF	Citations
109	The full path of Janzen-Connell effects: genetic tracking of seeds to adult plant recruitment. Molecular Ecology, 2011, 20, 3953-3955.	2.0	21
110	The modularity of seed dispersal: differences in structure and robustness between bat– and bird–fruit networks. Oecologia, 2011, 167, 131-40.	0.9	111
111	Symposium 6: Mutualistic Networks. Bulletin of the Ecological Society of America, 2010, 91, 367-370.	0.2	3
112	Coevolution in Multispecific Interactions among Free-Living Species. Evolution: Education and Outreach, 2010, 3, 40-46.	0.3	25
113	Past tree range dynamics in the Iberian Peninsula inferred through phylogeography and palaeodistribution modelling: A review. Review of Palaeobotany and Palynology, 2010, 162, 507-521.	0.8	87
114	Seed dispersal effectiveness revisited: a conceptual review. New Phytologist, 2010, 188, 333-353.	3.5	840
115	The phylogenetic structure of plant facilitation networks changes with competition. Journal of Ecology, 2010, 98, 1454-1461.	1.9	34
116	Nestedness versus modularity in ecological networks: two sides of the same coin?. Journal of Animal Ecology, 2010, 79, 811-817.	1.3	367
117	Pollen, seeds and genes: the movement ecology of plants. Heredity, 2010, 105, 329-330.	1.2	28
118	Isolation and characterization of 20 microsatellite loci for laurel species (<i>Laurus</i> , Lauraceae). American Journal of Botany, 2010, 97, e26-30.	0.8	13
119	Changes of a mutualistic network over time: reanalysis over a 10â€year period. Ecology, 2010, 91, 793-801.	1.5	99
120	Maternal genetic correlations in the seed rain: effects of frugivore activity in heterogeneous landscapes. Journal of Ecology, 2009, 97, 1424-1435.	1.9	26
121	On gene dispersal studies in complex landscapes: a reply to the comment on GarcÃa <i>etÂal.</i>)q1_1_0.78 2.0	4314 rgBT /
122	Diversity in a complex ecological network with two interaction types. Oikos, 2009, 118, 122-130.	1.2	157
123	The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology, 2009, 90, 1958-1970.	1.5	118
124	Isolation and characterization of 16 polymorphic microsatellite loci for $\langle i \rangle$ Frangula alnus $\langle i \rangle$ (Rhamnaceae). Molecular Ecology Resources, 2009, 9, 986-989.	2.2	4
125	Isolation and characterization of 12 microsatellite loci for <i>Rhamnus alaternus </i> (Rhamnaceae). Molecular Ecology Resources, 2009, 9, 1216-1218.	2.2	4
126	Isolation and characterization of 13 microsatellite loci for <i>Neochamaelea pulverulenta</i> (Cneoraceae). Molecular Ecology Resources, 2009, 9, 1497-1500.	2.2	5

#	Article	IF	CITATIONS
127	Mutualistic networks. Frontiers in Ecology and the Environment, 2009, 7, 429-436.	1.9	126
128	A neutralâ€niche theory of nestedness in mutualistic networks. Oikos, 2008, 117, 1609-1618.	1.2	176
129	Switching behavior, coexistence and diversification: comparing empirical communityâ€wide evidence with theoretical predictions. Ecology Letters, 2008, 11, 802-808.	3.0	45
130	Vertebrate dispersal syndromes along the Atlantic forest: broadâ€scale patterns and macroecological correlates. Global Ecology and Biogeography, 2008, 17, 503-513.	2.7	131
131	Spatioâ€ŧemporal dynamics and local hotspots of initial recruitment in vertebrateâ€dispersed trees. Journal of Ecology, 2008, 96, 668-678.	1.9	49
132	TEMPORAL DYNAMICS IN A POLLINATION NETWORK. Ecology, 2008, 89, 1573-1582.	1.5	417
133	Seed Dispersal Anachronisms: Rethinking the Fruits Extinct Megafauna Ate. PLoS ONE, 2008, 3, e1745.	1.1	292
134	A neutral-niche theory of nestedness in mutualistic networks. Oikos, 2008, , .	1.2	1
135	The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19891-19896.	3.3	1,728
136	Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3278-3282.	3.3	588
137	Plant-Animal Mutualistic Networks: The Architecture of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 567-593.	3 . 8	1,178
138	Can Population Genetic Structure Be Predicted from Lifeâ€History Traits?. American Naturalist, 2007, 169, 662-672.	1.0	235
139	Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 2007, 448, 925-928.	13.7	470
140	Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 2007, 116, 1919-1929.	1.2	139
141	Community-based processes behind species richness gradients: contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity. Global Ecology and Biogeography, 2007, 16, 709-719.	2.7	28
142	Contemporary pollen and seed dispersal in a Prunus mahaleb population: patterns in distance and direction. Molecular Ecology, 2007, 16, 1947-1955.	2.0	111
143	Modelling seed dispersal to predict seedling recruitment: Recolonization dynamics in a plantation forest. Ecological Modelling, 2007, 203, 464-474.	1.2	68
144	Build-up mechanisms determining the topology of mutualistic networks. Journal of Theoretical Biology, 2007, 249, 181-189.	0.8	37

#	Article	IF	Citations
145	Living in the land of ghosts: fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil, 2007,, 104-123.		37
146	Frugivores, seeds and genes: analysing the key elements of seed shadows, 2007, , 229-251.		22
147	An empirical approach to analysing the demographic consequences of seed dispersal by frugivores, 2007, , 391-406.		25
148	Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 2007, 116, 1919-1929.	1.2	4
149	Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance. Science, 2006, 312, 431-433.	6.0	997
150	Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation. Botanical Journal of the Linnean Society, 2006, 151, 141-149.	0.8	213
151	Structure in plant-animal interaction assemblages. Oikos, 2006, 113, 174-184.	1.2	367
152	The smallest of all worlds: Pollination networks. Journal of Theoretical Biology, 2006, 240, 270-276.	0.8	110
153	Spatial variation of post-dispersal seed removal by rodents in highland microhabitats of Spain and Switzerland. Seed Science Research, 2006, 16, 213-222.	0.8	25
154	Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecology Letters, 2005, 8, 1088-1094.	3.0	467
155	Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb L. population. Molecular Ecology, 2005, 14, 1821-1830.	2.0	87
156	Random initial condition in small Barabasi-Albert networks and deviations from the scale-free behavior. Physical Review E, 2005, 71, 037101.	0.8	25
157	Size-based fruit selection of Calophyllum brasiliense (Clusiaceae) by bats of the genus Artibeus (Phyllostomidae) in a Restinga area, southeastern Brazil. Acta Chiropterologica, 2005, 7, 179-182.	0.2	25
158	Spatial structure and dynamics in a marine food web., 2005,, 19-24.		5
159	Rangewide phylogeography of a birdâ€dispersed Eurasian shrub: contrasting Mediterranean and temperate glacial refugia. Molecular Ecology, 2003, 12, 3415-3426.	2.0	151
160	The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9383-9387.	3.3	1,857
161	Geographic Patterns in Plant-Pollinator Mutualistic Networks. Ecology, 2002, 83, 2416.	1.5	22
162	GEOGRAPHIC PATTERNS IN PLANT–POLLINATOR MUTUALISTIC NETWORKS. Ecology, 2002, 83, 2416-2424.	1.5	390

#	Article	IF	CITATIONS
163	Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters, 2002, 6, 69-81.	3.0	661
164	Frugivore-generated seed shadows: a landscape view of demographic and genetic effects, 2002, , 305-321.		47
165	Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Molecular Ecology, 2001, 10, 2275-2283.	2.0	245
166	Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology, 2000, 88, 435-446.	1.9	185
167	RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Molecular Ecology, 2000, 9, 1293-1305.	2.0	83
168	Seed Disperser Effectiveness: The Quantity Component and Patterns of Seed Rain for Prunus mahaleb. Ecological Monographs, 2000, 70, 591.	2.4	47
169	SEED DISPERSER EFFECTIVENESS: THE QUANTITY COMPONENT AND PATTERNS OF SEED RAIN FORPRUNUS MAHALEB. Ecological Monographs, 2000, 70, 591-615.	2.4	281
170	Fruits and frugivory , 2000, , 125-165.		425
171	Annual Variability in Seed Production by Woody Plants and the Masting Concept: Reassessment of Principles and Relationship to Pollination and Seed Dispersal. American Naturalist, 1998, 152, 576-594.	1.0	375
172	Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. New Phytologist, 1998, 140, 425-437.	3.5	39
173	Angiosperm Fleshy Fruits and Seed Dispersers: A Comparative Analysis of Adaptation and Constraints in Plant-Animal Interactions. American Naturalist, 1995, 145, 163-191.	1.0	372
174	Shuffling the offspring: Uncoupling and spatial discordance of multiple stages in vertebrate seed dispersal. Ecoscience, 1995, 2, 230-237.	0.6	184
175	Frugivore-Mediated Selection on Fruit and Seed Size: Birds and St. Lucie's Cherry, Prunus Mahaleb. Ecology, 1995, 76, 2627-2639.	1.5	155
176	Spatial and Temporal Variation in the Avian-Frugivore Assemblage of Prunus mahaleb: Patterns and Consequences. Oikos, 1994, 71, 479.	1.2	98
177	Recruitment of a Mastâ€Fruiting, Birdâ€Dispersed Tree: Bridging Frugivore Activity and Seedling Establishment. Ecological Monographs, 1994, 64, 315-344.	2.4	433
178	Pollination biology of Prunus mahaleb L.: deferred consequences of gender variation for fecundity and seed size. Biological Journal of the Linnean Society, 1993, 50, 65-84.	0.7	44
179	Geographical ecology and variation of plant-seed disperser interactions: southern Spanish junipers and frugivorous thrushes., 1993,, 85-104.		31
180	Geographical ecology and variation of plant-seed disperser interactions: southern Spanish junipers and frugivorous thrushes. Plant Ecology, 1993, 107-108, 85-104.	1.2	63

#	ARTICLE	IF	CITATIONS
181	Gender Variation and Expression of Monoecy in Juniperus phoenicea (L.) (Cupressaceae). Botanical Gazette, 1991, 152, 476-485.	0.6	32
182	Pre-Dispersal Biology of Pistacia lentiscus (Anacardiaceae): Cumulative Effects on Seed Removal by Birds. Oikos, 1989, 55, 375.	1.2	90
183	Avian Fruit Removal: Effects of Fruit Variation, Crop Size, and Insect Damage. Ecology, 1987, 68, 1711-1723.	1.5	153
184	Patterns of Mutualistic Interactions in Pollination and Seed Dispersal: Connectance, Dependence Asymmetries, and Coevolution. American Naturalist, 1987, 129, 657-677.	1.0	655
185	Frugivory, external morphology and digestive system in mediterranean sylviid warblers Sylvia spp. Ibis, 1987, 129, 175-189.	1.0	84
186	Seed Weight Variation and Differential Avian Dispersal in Blackberries Rubus ulmifolius. Oikos, 1984, 43, 149.	1.2	64
187	Fig-Seed Predation and Dispersal by Birds. Biotropica, 1983, 15, 38.	0.8	63
188	Migrant Birds Are the Main Seed Dispersers of Blackberries in Southern Spain. Oikos, 1982, 38, 183.	1.2	106
189	Prunus mahaleb and Birds: The Highâ€Efficiency Seed Dispersal System of a Temperate Fruiting Tree. Ecological Monographs, 1981, 51, 203-218.	2.4	212
190	THE FRUGIVOROUS DET OF BLACKCAP POPULATIONS <i>SYLVIA ATRICAPILLA </i> WINTERING IN SOUTHERN SPAIN. Ibis, 1981, 123, 502-507.	1.0	75
191	The Biodiversity of Ecological Interactions: Challenges for recording and documenting the Web of Life. Biodiversity Information Science and Standards, 0, 5, .	0.0	2
192	Functional roles of frugivores and plants shape hyper $\widehat{a}\in \mathbb{R}$ iverse mutualistic interactions under two antagonistic conservation scenarios. Biotropica, 0, , .	0.8	1
193	Parasite species richness and host range are not spatially conserved. Global Ecology and Biogeography, 0, , .	2.7	0