Nobuya Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206703/publications.pdf

Version: 2024-02-01

NOBLIVA SAKAL

#	Article	IF	CITATIONS
1	Adduct-based p-doping of organic semiconductors. Nature Materials, 2021, 20, 1248-1254.	27.5	40
2	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	12.6	461
3	Fabrication of Efficient and Stable CsPbI ₃ Perovskite Solar Cells through Cation Exchange Process. Advanced Energy Materials, 2019, 9, 1901685.	19.5	101
4	Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 245-250.	27.8	1,103
5	Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors. Nature Communications, 2019, 10, 4475.	12.8	49
6	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy and Environmental Science, 2019, 12, 169-176.	30.8	115
7	Oxide Analogs of Halide Perovskites and the New Semiconductor Ba ₂ AgIO ₆ . Journal of Physical Chemistry Letters, 2019, 10, 1722-1728.	4.6	36
8	Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices. Journal of the American Chemical Society, 2019, 141, 1269-1279.	13.7	108
9	Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbl ₃ by Theory and Experiment. ACS Energy Letters, 2018, 3, 1787-1794.	17.4	455
10	Microseconds, milliseconds and seconds: deconvoluting the dynamic behaviour of planar perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 5959-5970.	2.8	200
11	Controlling Nucleation and Growth of Metal Halide Perovskite Thin Films for Highâ€Efficiency Perovskite Solar Cells. Small, 2017, 13, 1602808.	10.0	36
12	Solution-Processed Cesium Hexabromopalladate(IV), Cs ₂ PdBr ₆ , for Optoelectronic Applications. Journal of the American Chemical Society, 2017, 139, 6030-6033.	13.7	189
13	V-Shaped Hole-Transporting TPD Dimers Containing Tröger's Base Core. Journal of Physical Chemistry C, 2017, 121, 10267-10274.	3.1	6
14	Efficient and Air‧table Mixedâ€Cation Lead Mixedâ€Halide Perovskite Solar Cells with nâ€Doped Organic Electron Extraction Layers. Advanced Materials, 2017, 29, 1604186.	21.0	237
15	Amorphous Holeâ€Transporting Material based on 2,2′â€Bisâ€substituted 1,1′â€Biphenyl Scaffold for Appl in Perovskite Solar Cells. Chemistry - an Asian Journal, 2017, 12, 958-962.	ication	17
16	Influence of Interface Morphology on Hysteresis in Vaporâ€Deposited Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600470.	5.1	63
17	Reproducible Planar Heterojunction Solar Cells Based on One-Step Solution-Processed Methylammonium Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 462-473.	6.7	35
18	Measurement and modelling of dark current decay transients in perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 452-462.	5.5	64

Νοβυγά δακαι

#	Article	IF	CITATIONS
19	Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, .	39.5	1,169
20	Synthesis and Investigation of the Vâ€shaped Tröger′s Base Derivatives as Holeâ€ŧransporting Materials. Chemistry - an Asian Journal, 2016, 11, 2049-2056.	3.3	9
21	Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Holeâ€Transporter. Advanced Materials Interfaces, 2016, 3, 1600571.	3.7	105
22	Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI ₃ Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16399-16411.	3.1	118
23	A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families. Advanced Materials, 2016, 28, 10701-10709.	21.0	100
24	Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. Journal of Physical Chemistry Letters, 2016, 7, 1254-1259.	4.6	761
25	The mechanism of toluene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells. Journal of Materials Chemistry A, 2016, 4, 4464-4471.	10.3	86
26	A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351, 151-155.	12.6	2,514
27	Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2015, 9, 2311-2320.	14.6	173
28	A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. Journal of Physical Chemistry Letters, 2015, 6, 1773-1779.	4.6	69
29	Perovskite Crystals for Tunable White Light Emission. Chemistry of Materials, 2015, 27, 8066-8075.	6.7	362
30	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 2015, 6, 10030.	12.8	620
31	The Importance of Interface Morphology for Hysteresis-Free Perovskite Solar Cells. , 0, , .		0
32	Estimating oxidised Sn4+ species at the precursor stage: on the effect of reducing agents in Sn-based perovskites , 0, , .		0