Guowei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8206218/publications.pdf

Version: 2024-02-01

221 papers 12,401 citations

23567 58 h-index 30087 103 g-index

223 all docs 223 docs citations

times ranked

223

15324 citing authors

#	Article	IF	CITATIONS
1	Palladiumâ€polymer bilayer on a soft substrate for optical hydrogen sensing. Nano Select, 2022, 3, 655-661.	3.7	5
2	Carbon nanotube-dependent synthesis of armchair graphene nanoribbons. Nano Research, 2022, 15, 1709-1714.	10.4	8
3	Highly efficient Cu2ZnSn(S,Se)4 bifacial solar cell via a composition gradient strategy through the molecular ink. Science China Materials, 2022, 65, 612-619.	6.3	7
4	A facile and green large-scale fabrication of single atom catalysts for high photocatalytic H2 evolution activity. Chemical Engineering Journal, 2022, 427, 131795.	12.7	26
5	2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. Advanced Science, 2022, 9, e2103036.	11.2	38
6	Ultrafast dynamics of photoexcited carriers and coherent phonons in ultrathin Bi2Te3 thermoelectric films. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	2
7	Electronic structure regulation of cobalt oxide clusters for promoting photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 1899-1908.	10.3	15
8	Pulsedâ€Laserâ€Deposition Fabricated ZnIn ₂ S ₄ Photodetectors with Excellent ON/OFF Switching Characteristics toward Highâ€Temperatureâ€Resistant Photodetection Applications. Advanced Optical Materials, 2022, 10, .	7.3	16
9	Superior peroxidase mimetic activity induced by topological surface states of Weyl semimetal WTe2. Nano Today, 2022, 43, 101421.	11.9	12
10	A perspective on optimizing photoelectric conversion process in 2D transition-metal dichalcogenides and related heterostructures. Applied Physics Letters, 2022, 120, .	3.3	9
11	Nanoscale Selfâ€Wetting Driven Monatomization of Ag Nanoparticle for Excellent Photocatalytic Hydrogen Evolution. Small, 2022, 18, e2107840.	10.0	12
12	Atomically Dispersed Cu Nanozyme with Intensive Ascorbate Peroxidase Mimic Activity Capable of Alleviating ROSâ€Mediated Oxidation Damage. Advanced Science, 2022, 9, e2103977.	11.2	38
13	Suspended Palladium/Polymer Bilayer for High-Contrast and Fast Hydrogen Sensors. ACS Sensors, 2022, 7, 116-122.	7.8	9
14	Promoting the Performance of 2D Material Photodetectors by Dielectric Engineering. Small Methods, 2022, 6, e2101046.	8.6	20
15	<i>In situ</i> integration of Te/Si 2D/3D heterojunction photodetectors toward UV-vis-IR ultra-broadband photoelectric technologies. Nanoscale, 2022, 14, 6228-6238.	5.6	9
16	Van der Waals heterostructures based on 2D layered materials: Fabrication, characterization, and application in photodetection. Journal of Applied Physics, 2022, 131, .	2.5	11
17	A flexibly switchable TalrTe4–WSe2 van der Waals heterojunction photodetector with linear-polarization-dependent photosensitivity. Applied Physics Letters, 2022, 120, .	3.3	8
18	Self-Supporting, Binder-Free, and Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitor Electrode with Improved Electrochemical Performance. ACS Nano, 2022, 16, 9713-9727.	14.6	76

#	Article	IF	CITATIONS
19	Optically controlled coalescence and splitting of femtoliter/picoliter droplets for microreactors. RSC Advances, 2022, 12, 18311-18320.	3.6	3
20	Promoting photocatalytic hydrogen evolution by introducing hot islands: SnSe nanoparticles on ZnIn2S4 monolayer. Chemical Engineering Journal, 2021, 404, 126477.	12.7	44
21	Ternary Ta ₂ PdS ₆ Atomic Layers for an Ultrahigh Broadband Photoresponsive Phototransistor. Advanced Materials, 2021, 33, e2005607.	21.0	44
22	A hybrid gold-carbyne nanocrystals platform for light-induced crossover of redox enzyme-like activities. Chemical Engineering Journal, 2021, 408, 127244.	12.7	9
23	Giant Switching Effect and Spintronic Transport Properties in Cyclo[18]carbonâ€Based Molecular Devices. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000582.	2.4	12
24	Ti < sub > 3 < / sub > C < sub > 2 < / sub > T < sub > x < / sub > MXene for electrode materials of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11501-11529.	10.3	181
25	Paramagnetism of carbyne nanocrystals. Materials Today Communications, 2021, 26, 102152.	1.9	1
26	Single Polylactic Acid Nanowire for Highly Sensitive and Multifunctional Optical Biosensing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27983-27990.	8.0	9
27	A New Wide Bandgap Semiconductor: Carbyne Nanocrystals. Advanced Functional Materials, 2021, 31, 2104254.	14.9	6
28	Microsphere-assisted manipulation of a single Ag nanowire. Nanophotonics, 2021, 10, 2729-2736.	6.0	1
29	<i>Penta</i> â€PdPSe: A New 2D Pentagonal Material with Highly Inâ€Plane Optical, Electronic, and Optoelectronic Anisotropy. Advanced Materials, 2021, 33, e2102541.	21.0	66
30	Multielement 2D layered material photodetectors. Nanotechnology, 2021, 32, 392001.	2.6	12
31	Bifacial Cu ₂ ZnSn(S,Se) ₄ Thin Film Solar Cell Based on Molecular Ink and Rapid Thermal Processing. Advanced Materials Interfaces, 2021, 8, 2100971.	3.7	6
32	Ratiometric fluorescent sensor based on 2D MOF nanosheets modified by DNA for sensitive detection of Hg ²⁺ . Nanotechnology, 2021, 32, 505501.	2.6	8
33	Mie resonant scattering-based refractive index sensor using a quantum dots-doped polylactic acid nanowire. Applied Physics Letters, 2021, 119, .	3.3	3
34	A Universal and Facile Method of Tailoring the Thickness of Mo(S _{<i>x</i>} ,Se _{1â°'<i>x</i>}) ₂ , Contributing to Highly Efficient Flexible Cu ₂ ,2100598.	5.8	13
35	Enhancing electron density of bulk g-C3N4 through phosphorus doping for promoting photocatalytic hydrogen evolution reaction. Applied Surface Science, 2021, 570, 151186.	6.1	30
36	Individual Si Nanospheres Wrapped in a Suspended Monolayer WS ₂ for Electromechanically Controlled Mieâ€Type Nanopixels. Advanced Optical Materials, 2021, 9, 2001954.	7.3	7

#	Article	IF	CITATIONS
37	Research Progress on the Application of Lanthanide-Ion-Doped Phosphor Materials in Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 1035-1060.	6.7	33
38	9.63% efficient flexible Cu ₂ ZnSn(S,Se) ₄ solar cells fabricated <i>via</i> scalable doctor-blading under ambient conditions. Journal of Materials Chemistry A, 2021, 9, 25062-25072.	10.3	15
39	Carbyne Nanocrystal: One-Dimensional van der Waals Crystal. ACS Nano, 2021, 15, 16769-16776.	14.6	7
40	Construction of GQDsâ€Decorated Ultrathin Bi ₂ WO ₆ Nanosheets Hydrogel: a Recyclableâ€Flexible Platform with Excellent Piezoâ€Photocatalytic Activity for Highâ€Performance Water Decontamination and its Theoretical Interpretation. Particle and Particle Systems Characterization, 2021, 38, .	2.3	7
41	Light–Matter Interactions between Germanium Nanocavities and Quantum Dots at Visible Wavelengths. Journal of Physical Chemistry C, 2021, 125, 812-818.	3.1	2
42	Direct–indirect bandgap transition in monolayer MoS ₂ induced by an individual Si nanoparticle. Nanotechnology, 2020, 31, 065204.	2.6	9
43	Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn ₂ S ₄ for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 207-217.	10.3	131
44	2D material broadband photodetectors. Nanoscale, 2020, 12, 454-476.	5.6	167
45	Constructing Builtâ€n Electric Field in Ultrathin Graphitic Carbon Nitride Nanosheets by N and O Codoping for Enhanced Photocatalytic Hydrogen Evolution Activity. Small, 2020, 16, e1905700.	10.0	79
46	Surprising Efficiency Enhancement of Cu ₂ ZnSn(S,Se) ₄ Solar Cells with Abnormal Zn/Sn Ratios. Solar Rrl, 2020, 4, 2000325.	5.8	25
47	Europium (II)â€Doped Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells with Carbon Electrodes. Solar Rrl, 2020, 4, 2000390.	5.8	41
48	All-dielectric materials and related nanophotonic applications. Materials Science and Engineering Reports, 2020, 141, 100563.	31.8	28
49	Self-integrated effects of 2D Znln2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation. Nano Energy, 2020, 76, 105031.	16.0	106
50	Non-layered 2D materials toward advanced photoelectric devices: progress and prospects. Materials Horizons, 2020, 7, 2185-2207.	12.2	47
51	Directional radiation and photothermal effect enhanced control of 2D excitonic emission based on germanium nanoparticles. Nanotechnology, 2020, 31, 385201.	2.6	2
52	Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles. Materials Horizons, 2020, 7, 1542-1551.	12.2	12
53	Modified Ti ₃ C ₂ nanosheets as peroxidase mimetics for use in colorimetric detection and immunoassays. Journal of Materials Chemistry B, 2020, 8, 2650-2659.	5.8	35
54	A fluorescent and colorimetric probe of carbyne nanocrystals coated Au nanoparticles for selective and sensitive detection of ferrous ions. Carbon, 2020, 167, 196-201.	10.3	20

#	Article	IF	CITATIONS
55	Multiple resonance coupling in an individual germanium nanogroove with organic dyes. Journal Physics D: Applied Physics, 2020, 53, 215103.	2.8	1
56	2D group 6 transition metal dichalcogenides toward wearable electronics and optoelectronics. Journal of Applied Physics, 2020, 127, .	2.5	19
57	Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments. Nature Communications, 2020, 11, 647.	12.8	18
58	Visible-light-driven room-temperature gas sensor based on carbyne nanocrystals. Sensors and Actuators B: Chemical, 2020, 316, 128200.	7.8	11
59	Loss-favored ultrasensitive refractive index sensor based on directional scattering from a single all-dielectric nanosphere. Journal of Materials Chemistry C, 2020, 8, 6350-6357.	5.5	3
60	Hot Carriers and Photothermal Effects of Monolayer MoO _{<i>x</i>} for Promoting Sulfite Oxidase Mimetic Activity. ACS Applied Materials & Date of the Carriers and Photothermal Effects of Monolayer MoO _{<i>x</i>} Oxidase Mimetic Activity. ACS Applied Materials & Date of the Carriers and Photothermal Effects of Monolayer MoO _{<i>x</i>Oxidase Mimetic Activity. ACS Applied Materials & Date of the Carriers and Photothermal Effects of Monolayer MoO_{<i>x</i>Oxidase Mimetic Activity. ACS Applied Materials & Date of the Carriers and Photothermal Effects of Monolayer MoO_{<i>x</i>Oxidase Mimetic Activity. ACS Applied Materials & Date of the Carriers and Photothermal Effects of Monolayer MoO_{Oxidase Mimetic Activity. ACS Applied Materials & Date of the Carriers and Photothermal Effects of Monolayer MoO}}}}	8.0	18
61	Photothermal conversion assisted photocatalytic hydrogen evolution from amorphous carbon nitrogen nanosheets with nitrogen vacancies. Physical Chemistry Chemical Physics, 2020, 22, 4453-4463.	2.8	21
62	Second harmonic generation in 2D layered materials. 2D Materials, 2020, 7, 042002.	4.4	62
63	Trapping and filtering of light by single Si nanospheres in a GaAs nanocavity. Nanoscale, 2019, 11, 16299-16307.	5 . 6	2
64	Cross-linked bond accelerated interfacial charge transfer in monolayer zinc indium sulfide (Znln2S4)/reduced graphene oxide (RGO) heterostructure for photocatalytic hydrogen production with mechanistic insight. Catalysis Science and Technology, 2019, 9, 4066-4076.	4.1	26
65	Interface Engineering of Band Evolution and Transport Properties of Bilayer WSe2 under Different Electric Fields. Journal of Physical Chemistry C, 2019, 123, 19812-19819.	3.1	4
66	CdS Nanorod-Amorphous Molybdenum Oxide Nanocomposite for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 6783-6792.	5.0	24
67	Oxygen Vacancyâ€Engineered PEGylated MoO ₃ <i>_{â^'x}</i> Nanoparticles with Superior Sulfite Oxidase Mimetic Activity for Vitamin B1 Detection. Small, 2019, 15, e1903153.	10.0	41
68	Scalable and green production of porous graphene nanosheets for flexible supercapacitors. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	7
69	Amorphous Fe ₂ O ₃ for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2019, 9, 5582-5592.	4.1	40
70	Single silicon nanostripe gated suspended monolayer and bilayer WS ₂ to realize abnormal electro-optical modulation. Materials Horizons, 2019, 6, 334-342.	12.2	17
71	Improvement of Cu ₂ ZnSn(S,Se) ₄ Solar Cells by Adding <i>N</i> , <i>N</i> ,6Dimethylformamide to the Dimethyl Sulfoxideâ€Based Precursor Ink. ChemSusChem, 2019, 12, 1692-1699.	6.8	26
72	Active Pore-Edge Engineering of Single-Layer Niobium Diselenide Porous Nanosheets Electrode for Hydrogen Evolution. Nanomaterials, 2019, 9, 751.	4.1	11

#	Article	IF	CITATIONS
73	Recent progress in inkjet-printed solar cells. Journal of Materials Chemistry A, 2019, 7, 13873-13902.	10.3	102
74	Fullerene-like MoS ₂ Nanoparticles as Cascade Catalysts Improving Lubricant and Antioxidant Abilities of Artificial Synovial Fluid. ACS Biomaterials Science and Engineering, 2019, 5, 3079-3088.	5.2	29
75	Directional Fano Resonance in an Individual GaAs Nanospheroid. Small, 2019, 15, e1900546.	10.0	16
76	Tunable Control of Interlayer Excitons in WS ₂ /MoS ₂ Heterostructures via Strong Coupling with Enhanced Mie Resonances. Advanced Science, 2019, 6, 1802092.	11,2	40
77	Dynamic radiative tailoring based on mid-refractive dielectric nanoantennas. Nanoscale Horizons, 2019, 4, 712-719.	8.0	11
78	Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 248, 193-201.	20.2	369
79	Determination of optimum optoelectronic properties in vertically stacked MoS ₂ /h-BN/WSe ₂ van der Waals heterostructures. Physical Chemistry Chemical Physics, 2019, 21, 23179-23186.	2.8	19
80	Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect. Nanoscale Horizons, 2019, 4, 148-157.	8.0	18
81	Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes. Journal of Colloid and Interface Science, 2019, 534, 55-63.	9.4	34
82	Cobalt decorated ultra-thin Ti ₃ C ₂ MXene electrocatalyst for high-efficiency hydrogen evolution reaction. Materials Research Express, 2019, 6, 025056.	1.6	14
83	Photoluminescence manipulation of WS ₂ flakes by an individual Si nanoparticle. Materials Horizons, 2019, 6, 97-106.	12.2	36
84	CuMnO2 nanoflakes as pH-switchable catalysts with multiple enzyme-like activities for cysteine detection. Sensors and Actuators B: Chemical, 2019, 279, 374-384.	7.8	65
85	Flexible and Highâ€Performance Allâ€⊋D Photodetector for Wearable Devices. Small, 2018, 14, e1704524.	10.0	128
86	An efficient solar-enabled 2D layered alloy material evaporator for seawater desalination. Journal of Materials Chemistry A, 2018, 6, 3869-3876.	10.3	72
87	An Allâ€Dielectric Metasurface Building Block for the Kerker Effect between Excitons and Nanocavities: Germanium Nanogroove. Advanced Optical Materials, 2018, 6, 1701176.	7.3	7
88	Hydrogen-interstitial CuWO4 nanomesh: A single-component full spectrum-active photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2018, 227, 35-43.	20.2	41
89	Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale, 2018, 10, 2876-2886.	5.6	94
90	Nanozymatic Antioxidant System Based on MoS ₂ Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 12453-12462.	8.0	148

#	Article	IF	Citations
91	Few-layered MoSe ₂ nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H ₂ O ₂ and xanthine. Journal of Materials Chemistry B, 2018, 6, 105-111.	5.8	83
92	Fabrication of a high performance ZnIn ₂ S ₄ /Si heterostructure photodetector array for weak signal detection. Journal of Materials Chemistry C, 2018, 6, 12928-12939.	5.5	25
93	Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nature Communications, 2018, 9, 4036.	12.8	174
94	Ultrasensitive 2D/3D Heterojunction Multicolor Photodetectors: A Synergy of Laterally and Vertically Aligned 2D Layered Materials. ACS Applied Materials & Synergy of Laterally and Vertically Aligned 2D Layered Materials.	8.0	39
95	Facile and scalable production of amorphous nickel borate for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19689-19695.	10.3	38
96	In Situ Growth of the Ni ₃ V ₂ O ₈ @PANI Composite Electrode for Flexible and Transparent Symmetric Supercapacitors. ACS Applied Materials & Diterfaces, 2018, 10, 20688-20695.	8.0	83
97	Inorganic fullerene-like molybdenum selenide with good biocompatibility synthesized by laser ablation in liquids. Nanotechnology, 2018, 29, 295604.	2.6	13
98	Tin dioxide quantum dots coupled with graphene for high-performance bulk-silicon Schottky photodetector. Materials Horizons, 2018, 5, 727-737.	12.2	61
99	Creating a Nanoscale "Black Hole―to Trap Light by a Single Au Nanosphere in an Allâ€Dielectric Nanocavity. Advanced Optical Materials, 2018, 6, 1800366.	7.3	1
100	The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. Science Advances, 2018, 4, eaas 9894.	10.3	159
101	Molecular Luminescence of White Carbon. Small, 2017, 13, 1603495.	10.0	15
102	Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters. Physical Chemistry Chemical Physics, 2017, 19, 8356-8362.	2.8	25
103	An Innovative Postdeposition Annealing Approach Producing Centimeterâ€6cale In ₂ O ₃ /In ₂ (TeO ₃) ₃ Bulk Heterojunction Thin Film for Roomâ€7emperature Persistent Photoconductivity. Advanced Optical Materials, 2017, 5, 1600908.	7.3	19
104	Generating scattering dark states through the Fano interference between excitons and an individual silicon nanogroove. Light: Science and Applications, 2017, 6, e16197-e16197.	16.6	31
105	Self-Assembly of the Lateral In ₂ Se ₃ /CulnSe ₂ Heterojunction for Enhanced Photodetection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7288-7296.	8.0	57
106	Modifying photocatalysts for solar hydrogen evolution based on the electron behavior. Journal of Materials Chemistry A, 2017, 5, 5235-5259.	10.3	36
107	Centimeter-Scale Deposition of Mo _{0.5} W _{0.5} Se ₂ Alloy Film for High-Performance Photodetectors on Versatile Substrates. ACS Applied Materials & Substrates, 2017, 9, 14920-14928.	8.0	74
108	Plasmon-Induced Energy Transfer and Photoluminescence Manipulation in MoS ₂ with a Different Number of Layers. ACS Photonics, 2017, 4, 1092-1100.	6.6	39

#	Article	IF	Citations
109	Enhanced second harmonic generation in individual barium titanate nanoparticles driven by Mie resonances. Journal of Materials Chemistry C, 2017, 5, 4810-4819.	5.5	33
110	Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	17
111	Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys. Journal of Materials Chemistry A, 2017, 5, 773-781.	10.3	68
112	Alloying-assisted phonon engineering of layered BilnSe ₃ @nickel foam for efficient solar-enabled water evaporation. Nanoscale, 2017, 9, 16396-16403.	5.6	59
113	A 2D self-assembled MoS ₂ /Znln ₂ S ₄ heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 18290-18298.	5.6	121
114	Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications. Nanoscale, 2017, 9, 15673-15684.	5.6	40
115	Allâ€Layered 2D Optoelectronics: A Highâ€Performance UV–vis–NIR Broadband SnSe Photodetector with Bi ₂ Te ₃ Topological Insulator Electrodes. Advanced Functional Materials, 2017, 27, 1701823.	14.9	222
116	WSe ₂ few layers with enzyme mimic activity for high-sensitive and high-selective visual detection of glucose. Nanoscale, 2017, 9, 11806-11813.	5.6	97
117	A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology. Nanotechnology, 2017, 28, 415501.	2.6	25
118	Self-Assembly High-Performance UV–vis–NIR Broadband β-In ₂ Se ₃ /Si Photodetector Array for Weak Signal Detection. ACS Applied Materials & Detection and Supplied Mater	8.0	95
119	Directional Scattering in a Germanium Nanosphere in the Visible Light Region. Advanced Optical Materials, 2017, 5, 1700761.	7.3	37
120	Electrically Controlled Scattering in a Hybrid Dielectric-Plasmonic Nanoantenna. Nano Letters, 2017, 17, 4793-4800.	9.1	19
121	Nanodiamondâ€Embedded pâ€Type Copper(I) Oxide Nanocrystals for Broadâ€Spectrum Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501865.	19.5	81
122	A Floating Sheet for Efficient Photocatalytic Water Splitting. Advanced Energy Materials, 2016, 6, 1600510.	19.5	74
123	Amorphous transitional metal borides as substitutes for Pt cocatalysts for photocatalytic water splitting. Nano Energy, 2016, 27, 103-113.	16.0	142
124	Enhancing local luminescence in a hollow ZnO microcolumn by antiresonant reflecting. Nanoscale, 2016, 8, 9226-9233.	5.6	5
125	Nanodiamonds: Nanodiamond-Embedded p-Type Copper(I) Oxide Nanocrystals for Broad-Spectrum Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	19.5	0
126	Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering. ACS Applied Materials & Distribution (1998) amp; Interfaces, 2016, 8, 12915-12924.	8.0	133

#	Article	IF	Citations
127	Flexible, transparent and ultra-broadband photodetector based on large-area WSe ₂ film for wearable devices. Nanotechnology, 2016, 27, 225501.	2.6	254
128	Giant nonlinear optical responses of carbyne. Journal of Materials Chemistry C, 2016, 4, 4692-4698.	5.5	36
129	Self-assembling solid-state hydrogen source for drylands photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 15920-15928.	10.3	12
130	Growth of centimeter-scale high-quality In ₂ Se ₃ films for transparent, flexible and high performance photodetectors. Journal of Materials Chemistry C, 2016, 4, 8094-8103.	5.5	83
131	Midrefractive Dielectric Modulator for Broadband Unidirectional Scattering and Effective Radiative Tailoring in the Visible Region. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22468-22476.	8.0	26
132	Synergistic Effect of Hybrid Multilayer In ₂ Se ₃ and Nanodiamonds for Highly Sensitive Photodetectors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20200-20211.	8.0	59
133	Stable, Fast UVâ€"Visâ€"NIR Photodetector with Excellent Responsivity, Detectivity, and Sensitivity Based on α-In ₂ Te ₃ Films with a Direct Bandgap. ACS Applied Materials & Direct Band	8.0	85
134	Layered-material WS ₂ /topological insulator Bi ₂ Te ₃ heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. Journal of Materials Chemistry C, 2016, 4, 7831-7840.	5.5	135
135	Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level. Nanoscale, 2016, 8, 15001-15007.	5.6	18
136	Cubic boron nitride with an intrinsic peroxidase-like activity. RSC Advances, 2016, 6, 70124-70132.	3.6	23
137	Second harmonic generation from an individual amorphous selenium nanosphere. Nanotechnology, 2016, 27, 425206.	2.6	12
138	Second harmonic generation from an individual all-dielectric nanoparticle: resonance enhancement versus particle geometry. Journal of Materials Chemistry C, 2016, 4, 6063-6069.	5.5	19
139	A flexible, transparent and super-long-life supercapacitor based on ultrafine Co ₃ O ₄ nanocrystal electrodes. Nanoscale, 2016, 8, 4227-4235.	5.6	205
140	Reduced TiO ₂ -Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts. ACS Applied Materials & Interfaces, 2016, 8, 8536-8545.	8.0	140
141	Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale, 2016, 8, 8826-8838.	5.6	69
142	New type high-index dielectric nanosensors based on the scattering intensity shift. Nanoscale, 2016, 8, 5996-6007.	5.6	50
143	Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts. Nanoscale, 2016, 8, 5015-5023.	5.6	60
144	Robust topological surface transport with weak localization bulk channels in polycrystalline Bi ₂ Te ₃ films. Journal Physics D: Applied Physics, 2016, 49, 095003.	2.8	17

#	Article	IF	Citations
145	Polarization dependent photocurrent in the Bi2Te3 topological insulator film for multifunctional photodetection. Scientific Reports, 2015, 5, 14184.	3.3	57
146	Lasing from an individual ZnO hexagonal microrod on the Au surface coated by a nanometer-scaled SiO2 layer. Applied Physics A: Materials Science and Processing, 2015, 120, 817-821.	2.3	2
147	Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers. Scientific Reports, 2015, 5, 8776.	3.3	21
148	Matching energy levels between TiO ₂ and α-Fe ₂ O ₃ in a core–shell nanoparticle for visible-light photocatalysis. Journal of Materials Chemistry A, 2015, 3, 14853-14863.	10.3	57
149	A metallic metal oxide (Ti ₅ O ₉)-metal oxide (TiO ₂) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity. Nanotechnology, 2015, 26, 255705.	2.6	16
150	Electronic Reconstruction of \hat{l}_{\pm} -Ag ₂ WO ₄ Nanorods for Visible-Light Photocatalysis. ACS Nano, 2015, 9, 7256-7265.	14.6	131
151	Promoting Photosensitivity and Detectivity of the Bi/Si Heterojunction Photodetector by Inserting a WS ₂ Layer. ACS Applied Materials & mp; Interfaces, 2015, 7, 26701-26708.	8.0	98
152	Fluorescence Origin of Nanodiamonds. Journal of Physical Chemistry C, 2015, 119, 2239-2248.	3.1	79
153	Directional Fano Resonance in a Silicon Nanosphere Dimer. ACS Nano, 2015, 9, 2968-2980.	14.6	198
154	Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes. Journal of Materials Chemistry A, 2015, 3, 7649-7658.	10.3	88
155	Amorphous Nickel Hydroxide Nanosheets with Ultrahigh Activity and Super-Long-Term Cycle Stability as Advanced Water Oxidation Catalysts. Crystal Growth and Design, 2015, 15, 4475-4483.	3.0	51
156	Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Scientific Reports, 2015, 5, 11070.	3.3	157
157	Light-controlled C ₂ H ₂ gas sensing based on Au–ZnO nanowires with plasmon-enhanced sensitivity at room temperature. Journal of Materials Chemistry C, 2015, 3, 7067-7074.	5.5	44
158	Electrochemical route for accessing amorphous mixed-metal hydroxide nanospheres and magnetism. RSC Advances, 2015, 5, 45359-45367.	3.6	13
159	Ultra-broadband and high response of the Bi ₂ Te ₃ â€"Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale, 2015, 7, 12535-12541.	5.6	214
160	Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal. Scientific Reports, 2015, 5, 9028.	3.3	81
161	Nanodiamonds from coal under ambient conditions. Nanoscale, 2015, 7, 6114-6125.	5.6	38
162	All-Solid-State Symmetric Supercapacitor Based on Co ₃ O ₄ Nanoparticles on Vertically Aligned Graphene. ACS Nano, 2015, 9, 5310-5317.	14.6	653

#	Article	IF	Citations
163	Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers. Nature Communications, 2015, 6, 7042.	12.8	95
164	Carbyne with finite length: The one-dimensional <i>sp</i> carbon. Science Advances, 2015, 1, e1500857.	10.3	131
165	Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Scientific Reports, 2015, 5, 12320.	3.3	79
166	Stable, highly-responsive and broadband photodetection based on large-area multilayered WS ₂ films grown by pulsed-laser deposition. Nanoscale, 2015, 7, 14974-14981.	5.6	274
167	Ultrahigh-Capacity Molecular Hydrogen Storage of a Lithium-Decorated Boron Monolayer. Journal of Physical Chemistry C, 2015, 119, 19681-19688.	3.1	49
168	A Simple Electrochemical Route to Access Amorphous Mixedâ€Metal Hydroxides for Supercapacitor Electrode Materials. Advanced Energy Materials, 2015, 5, 1401767.	19.5	182
169	A design of Si-based nanoplasmonic structure as an antenna and reception amplifier for visible light communication. Journal of Applied Physics, 2014, 116, .	2.5	13
170	Resistive switching properties and physical mechanism of cobalt ferrite thin films. Applied Physics Letters, 2014, 104, .	3.3	60
171	Reversible Nanodiamond-Carbon Onion Phase Transformations. Nano Letters, 2014, 14, 3645-3652.	9.1	113
172	Fabrication of One-Dimensional Chain of Iron-Based Bimetallic Alloying Nanoparticles with Unique Magnetizations. Crystal Growth and Design, 2014, 14, 5847-5855.	3.0	35
173	Anomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film. Scientific Reports, 2014, 4, 5876.	3.3	71
174	Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nature Communications, 2013, 4, 1894.	12.8	1,041
175	Amorphous nickel hydroxide nanospheres by a green electrochemistry technique: structure, morphology and magnetism. CrystEngComm, 2013, 15, 4054.	2.6	16
176	A new insight into the electrochemical growth of Ag nanodendrites without a strong electrolyte. RSC Advances, 2013, 3, 20532.	3.6	4
177	W-doping induced antiferroelectric to ferroelectric phase transition in PbZrO3 thin films prepared by chemical solution deposition. Applied Physics Letters, 2013, 102, .	3.3	33
178	Ag2V4O11 nanostructures for highly ethanol sensitive performance. CrystEngComm, 2013, 15, 6131.	2.6	17
179	Ferroelectric functionality in SrTiO3/Si heterojunctions. Journal of Applied Physics, 2013, 114, .	2.5	17
180	Amorphous cobalt hydroxide nanostructures and magnetism from green electrochemistry. RSC Advances, 2013, 3, 26412.	3.6	21

#	Article	IF	CITATIONS
181	Electrically induced colossal capacitance enhancement in LaAlO3/SrTiO3 heterostructures. NPG Asia Materials, 2013, 5, e65-e65.	7.9	4
182	SILVER NANOPARTICLES SYNTHESIZED BY LASER ABLATION IN LIQUIDS AND APPLICATION FOR SURFACE-ENHANCED RAMAN SCATTERING. , $2013, \dots$		1
183	Interface relaxation and band gap shift in epitaxial layers. AIP Advances, 2012, 2, .	1.3	8
184	Prediction of stable ferroelectricity in epitaxial BaTiO ₃ on Si. Applied Physics Letters, 2012, 101, 102903.	3.3	3
185	Transport and magnetic properties of the Co2MnSi/Al/Co2MnSi trilayer. Applied Physics Letters, 2012, 100, .	3.3	8
186	Topological insulator-graphene junction for spin transport. Applied Physics Letters, 2012, 101, 243102.	3.3	2
187	Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm, 2012, 14, 3291.	2.6	43
188	Surface rippling on bulk metallic glass under nanosecond pulse laser ablation. Applied Physics Letters, 2011, 99, .	3.3	48
189	Nanoporous silicon: Surface effect and bandgap blueshift. Journal of Applied Physics, 2011, 110, 033507.	2.5	3
190	Elimination of interface states of Co2MnSi/MgO/Co2MnSi magnetic tunneling junction by inserting an Al atomic layer. Applied Physics Letters, 2011, 98, 011910.	3.3	10
191	Experimental evidence of the nanoscaled topological metallic surface state of Bi 2 Te 3 and Sb 2 Te 3 films. Europhysics Letters, 2011, 95, 56002.	2.0	35
192	Band Gap Tunability in Semiconductor Nanocrystals by Strain: Size and Temperature Effect. Journal of Physical Chemistry C, 2011, 115, 6462-6466.	3.1	49
193	Edge effect on band gap shift in Si nanowires with polygonal cross-sections. Applied Physics Letters, 2011, 98, 263112.	3.3	35
194	The interface structure and magnetic and electronic properties of a Co2FeAl0.5Si0.5/MgO/Co2FeAl0.5Si0.5 magnetic tunneling junction. Journal of Applied Physics, 2011, 109, 083509.	2.5	3
195	Physical mechanism of quantum dot to quantum ring transformation upon capping process. Journal of Applied Physics, 2011, 109, 083542.	2.5	2
196	Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth. Applied Physics A: Materials Science and Processing, 2011, 102, 319-323.	2.3	19
197	Growth, structure, and cathodoluminescence of Dy-doped ZnO nanowires. Applied Physics A: Materials Science and Processing, 2011, 103, 73-79.	2.3	14
198	Promoting the yield of nanoparticles from laser ablation in liquid. Applied Physics A: Materials Science and Processing, 2011, 105, 903-907.	2.3	38

#	Article	IF	CITATIONS
199	Surface effect on the bandgap of BN one-dimensional nanostructures. Journal of Applied Physics, 2011, 110, .	2.5	3
200	Electrical field induced direct-to-indirect bandgap transition in ZnO nanowires. Journal of Applied Physics, 2010, 108, 024302.	2.5	13
201	Uniaxial strain modulated band gap of ZnO nanostructures. Applied Physics Letters, 2010, 96, 213101.	3.3	27
202	Phase Transition of Ilâ^'VI Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 15054-15060.	3.1	36
203	Bandgap shift in SnO2 nanostructures induced by lattice strain and coordination imperfection. Journal of Applied Physics, 2010, 108, .	2.5	24
204	Size-dependent oxidation behavior for the anomalous initial thermal oxidation process of Si. Applied Physics Letters, 2009, 94, 083108.	3.3	9
205	Nanosize confinement induced enhancement of spontaneous polarization in a ferroelectric nanowire. Applied Physics Letters, 2009, 95, 232901.	3.3	49
206	Indium Oxideâ^'zinc Oxide Nanosized Heterostructure and Whispering Gallery Mode Luminescence Emission. Journal of Physical Chemistry C, 2009, 113, 15480-15483.	3.1	30
207	Trapping High-Pressure Nanophase of Ge upon Laser Ablation in Liquid. Crystal Growth and Design, 2009, 9, 1390-1393.	3.0	36
208	Surface Energy of Nanostructural Materials with Negative Curvature and Related Size Effects. Chemical Reviews, 2009, 109, 4221-4247.	47.7	211
209	Oscillating current observed in field emission from a single zinc oxide nanostructure and the physical mechanism. Journal of Applied Physics, 2009, 106, .	2.5	17
210	Thermodynamic model of metal-induced self-assembly of Ge quantum dots on Si substrates. European Physical Journal B, 2008, 62, 295-298.	1.5	2
211	Controllable Fabrication and Cathodoluminescence Performance of High-index Facets GeO ₂ Micro- and Nanocubes and Spindles upon Electrical-field-assisted Laser Ablation in Liquid. Journal of Physical Chemistry C, 2008, 112, 13450-13456.	3.1	59
212	Synthesis of Body-Centered Cubic Carbon Nanocrystals. Crystal Growth and Design, 2008, 8, 581-586.	3.0	83
213	Fabrication of a SnO ₂ Nanowire Gas Sensor and Sensor Performance for Hydrogen. Journal of Physical Chemistry C, 2008, 112, 6643-6647.	3.1	408
214	Superheating and melting of nanocavities. Applied Physics Letters, 2008, 92, 051902.	3.3	8
215	First-principles calculations of structural, electronic and magnetic properties of SeNiO3. Applied Physics Letters, 2008, 92, 132914.	3.3	4
216	Fabrication of triode field emission display using metal-gate-plate. , 2007, , .		0

#	Article	IF	CITATIONS
217	Physical origin of spontaneous interfacial alloying in immiscible W/Cu multilayers. Journal of Materials Science, 2007, 42, 7446-7450.	3.7	11
218	Nanowire formation during catalyst assisted chemical vapor deposition. Physical Review B, 2005, 72, .	3.2	30
219	Structure evolution and ferroelectric and dielectric properties of Bi3.5Nd0.5Ti3O12 thin films under a moderate temperature annealing. Applied Physics Letters, 2004, 85, 5661-5663.	3.3	58
220	Formation of silver particles and silver oxide plume nanocomposites upon pulsed-laser induced liquid-solid interface reaction. European Physical Journal B, 2004, 41, 479-483.	1.5	10
221	Explosion Phase Formation of Nanocrystalline Boron Nitrides Upon Pulsed-Laser-Induced Liquid/Solid Interfacial Reaction. Journal of Materials Research, 2003, 18, 2774-2778.	2.6	20