List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205963/publications.pdf

Version: 2024-02-01

ΜΑΡΥΙΟΙΑΟΗ

#	Article	IF	CITATIONS
1	Oligomeric and Fibrillar Species of Amyloid-Î ² Peptides Differentially Affect Neuronal Viability. Journal of Biological Chemistry, 2002, 277, 32046-32053.	3.4	1,281
2	In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis. Journal of Biological Chemistry, 2003, 278, 11612-11622.	3.4	879
3	Preparing Synthetic AÎ ² in Different Aggregation States. Methods in Molecular Biology, 2010, 670, 13-32.	0.9	283
4	Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid β peptides. Biochemical Journal, 2000, 348, 359-365.	3.7	219
5	APOE4-specific Changes in AÎ ² Accumulation in a New Transgenic Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2012, 287, 41774-41786.	3.4	213
6	Glial Fibrillary Acidic Protein–Apolipoprotein E (apoE) Transgenic Mice: Astrocyte-Specific Expression and Differing Biological Effects of Astrocyte-Secreted apoE3 and apoE4 Lipoproteins. Journal of Neuroscience, 1998, 18, 3261-3272.	3.6	211
7	Differential effects of oligomeric and fibrillar amyloid-β1–42 on astrocyte-mediated inflammation. Neurobiology of Disease, 2005, 18, 459-465.	4.4	208
8	ApoE4 Decreases Spine Density and Dendritic Complexity in Cortical Neurons <i>In Vivo</i> . Journal of Neuroscience, 2009, 29, 15317-15322.	3.6	195
9	APOE genotype alters glial activation and loss of synaptic markers in mice. Clia, 2012, 60, 559-569.	4.9	186
10	Unique Lipoproteins Secreted by Primary Astrocytes From Wild Type, apoE (â^'/â^'), and Human apoE Transgenic Mice. Journal of Biological Chemistry, 1999, 274, 30001-30007.	3.4	182
11	Lipoproteins in the Central Nervous System. Annals of the New York Academy of Sciences, 2000, 903, 167-175.	3.8	182
12	Purification of Apolipoprotein E Attenuates Isoform-specific Binding to β-Amyloid. Journal of Biological Chemistry, 1995, 270, 9039-9042.	3.4	173
13	Isoform-Specific Effect of Apolipoprotein E on Cell Survival and β-Amyloid-Induced Toxicity in Rat Hippocampal Pyramidal Neuronal Cultures. Journal of Neuroscience, 1998, 18, 195-204.	3.6	167
14	Differential Regulation of Amyloid-β Endocytic Trafficking and Lysosomal Degradation by Apolipoprotein E Isoforms. Journal of Biological Chemistry, 2012, 287, 44593-44601.	3.4	156
15	Intraneuronal AÎ ² detection in 5xFAD mice by a new AÎ ² -specific antibody. Molecular Neurodegeneration, 2012, 7, 8.	10.8	144
16	Human APOE4 increases microglia reactivity at Aβ plaques in a mouse model of Aβ deposition. Journal of Neuroinflammation, 2014, 11, 111.	7.2	144
17	A Dual Role for Apolipoprotein E in Neuroinflammation: Anti- and Pro-Inflammatory Activity. Journal of Molecular Neuroscience, 2004, 23, 205-212.	2.3	139
18	Levels of Soluble Apolipoprotein E/Amyloid-β (Aβ) Complex Are Reduced and Oligomeric Aβ Increased with APOE4 and Alzheimer Disease in a Transgenic Mouse Model and Human Samples*. Journal of Biological Chemistry, 2013, 288, 5914-5926.	3.4	136

#	Article	IF	CITATIONS
19	Genetics ignite focus on microglial inflammation in Alzheimer's disease. Molecular Neurodegeneration, 2015, 10, 52.	10.8	128
20	Cognitive effects of cell-derived and synthetically derived AÎ ² oligomers. Neurobiology of Aging, 2011, 32, 1784-1794.	3.1	124
21	<i><scp>APOE</scp></i> â€modulated Aβâ€induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. Journal of Neurochemistry, 2015, 133, 465-488.	3.9	123
22	Apolipoprotein E and apolipoprotein E receptors modulate Aβ-induced glial neuroinflammatory responses. Neurochemistry International, 2001, 39, 427-434.	3.8	112
23	ApoE isoform affects LTP in human targeted replacement mice. NeuroReport, 2004, 15, 2655-2658.	1.2	107
24	Soluble apoE/AÎ ² complex: mechanism and therapeutic target for APOE4-induced AD risk. Molecular Neurodegeneration, 2014, 9, 2.	10.8	98
25	Apolipoprotein E Receptors Mediate the Effects of β-Amyloid on Astrocyte Cultures. Journal of Biological Chemistry, 2000, 275, 33974-33980.	3.4	86
26	ApoE and Aβ1–42 Interactions: Effects of Isoform and Conformation on Structure and Function. Journal of Molecular Neuroscience, 2004, 23, 235-246.	2.3	86
27	Apolipoprotein E modulates γâ€secretase cleavage of the amyloid precursor protein. Journal of Neurochemistry, 2004, 90, 1132-1143.	3.9	85
28	Apolipoprotein E and Alzheimer's disease: The protective effects of ApoE2 and E3. Journal of Alzheimer's Disease, 2002, 4, 145-154.	2.6	84
29	Amyloid-β Pathology and APOE Genotype Modulate Retinoid X Receptor Agonist Activity in Vivo. Journal of Biological Chemistry, 2014, 289, 30538-30555.	3.4	82
30	Association of human, rat, and rabbit apolipoprotein E with ?-amyloid. Journal of Neuroscience Research, 1997, 49, 9-18.	2.9	81
31	ApoE isoform-specific effects on LTP: blockade by oligomeric amyloid-β1–42. Neurobiology of Disease, 2005, 18, 75-82.	4.4	81
32	APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice. Molecular Neurodegeneration, 2015, 10, 7.	10.8	79
33	Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer's amyloid β peptides. Biochemical Journal, 2000, 348, 359.	3.7	78
34	ApoE isoform-dependent changes in hippocampal synaptic function. Molecular Neurodegeneration, 2009, 4, 21.	10.8	78
35	APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer's mice via cyclophilin A independently of amyloid-β. Nature Aging, 2021, 1, 506-520.	11.6	77
36	Effect of Apolipoprotein E on Neurite Outgrowth and βâ€Amyloidâ€Induced Toxicity in Developing Rat Primary Hippocampal Cultures. Journal of Neurochemistry, 1997, 68, 760-769.	3.9	71

#	Article	IF	CITATIONS
37	The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiology of Aging, 2016, 37, 47-57.	3.1	70
38	Aβ42 neurotoxicity in primary co-cultures: Effect of apoE isoform and Aβ conformation. Neurobiology of Aging, 2007, 28, 1139-1147.	3.1	64
39	Amyloid-β42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations. Journal of Neuroscience Methods, 2011, 196, 51-59.	2.5	58
40	APOE ε4 specific imbalance of arachidonic acid and docosahexaenoic acid in serum phospholipids identifies individuals with preclinical Mild Cognitive Impairment/Alzheimer's Disease. Aging, 2017, 9, 964-985.	3.1	58
41	EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer'ns disease. Journal of Lipid Research, 2017, 58, 1733-1755.	4.2	56
42	Apolipoprotein E Attenuates βâ€Amyloidâ€Induced Astrocyte Activation. Journal of Neurochemistry, 1998, 71, 1626-1634.	3.9	54
43	The generation and function of soluble apoE receptors in the CNS. Molecular Neurodegeneration, 2006, 1, 15.	10.8	53
44	White matter integrity is associated with cerebrospinal fluid markers of Alzheimer's disease in normal adults. Neurobiology of Aging, 2014, 35, 2263-2271.	3.1	51
45	Endocytic pathways mediating oligomeric Aβ42 neurotoxicity. Molecular Neurodegeneration, 2010, 5, 19.	10.8	48
46	Apolipoprotein E as a β-amyloid-independent factor in Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 38.	6.2	48
47	Alzheimer's disease pathology in APOE transgenic mouse models: The Who, What, When, Where, Why, and How. Neurobiology of Disease, 2020, 139, 104811.	4.4	44
48	Apolipoprotein E structural requirements for the formation of SDS-stable complexes with \hat{l}^2 -amyloid-(1â \in 40): the role of salt bridges. Biochemical Journal, 2002, 366, 273-279.	3.7	42
49	Introducing HumanAPOEinto AβTransgenic Mouse Models. International Journal of Alzheimer's Disease, 2011, 2011, 1-9.	2.0	42
50	Proposed mechanism for lipoprotein remodelling in the brain. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 819-823.	2.4	39
51	The role of APOE in transgenic mouse models of AD. Neuroscience Letters, 2019, 707, 134285.	2.1	37
52	Murine Gut Microbiome Association With APOE Alleles. Frontiers in Immunology, 2020, 11, 200.	4.8	37
53	APOE modulates the effect of estrogen therapy on Al ² accumulation EFAD-Tg mice. Neuroscience Letters, 2014, 560, 131-136.	2.1	36
54	SDS-Stable Complex Formation between Native Apolipoprotein E3 and β-Amyloid Peptides. Biochemistry, 2000, 39, 16119-16124.	2.5	33

#	Article	IF	CITATIONS
55	Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice. Molecular Neurodegeneration, 2019, 14, 47.	10.8	33
56	Self-Assembly of HEK Cell-Secreted ApoE Particles Resembles ApoE Enrichment of Lipoproteins as a Ligand for the LDL Receptor-Related Proteinâ€. Biochemistry, 2006, 45, 381-390.	2.5	32
57	ApoE4 Delays Dendritic Spine Formation during Neuron Development and Accelerates Loss of Mature Spines <i>in Vitro</i> . ASN Neuro, 2013, 6, AN20130043.	2.7	31
58	APOE4 Induces Site-Specific Tau Phosphorylation Through Calpain-CDK5 Signaling Pathway in EFAD-Tg Mice. Current Alzheimer Research, 2016, 13, 1048-1055.	1.4	31
59	Preferential interactions between ApoE-containing lipoproteins and Aβ revealed by a detection method that combines size exclusion chromatography with non-reducing gel-shift. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 295-302.	2.4	30
60	Rexinoids as Therapeutics for Alzheimer's Disease: Role of APOE. Current Topics in Medicinal Chemistry, 2017, 17, 708-720.	2.1	30
61	A multifunctional therapeutic approach to disease modification in multiple familial mouse models and a novel sporadic model of Alzheimer's disease. Molecular Neurodegeneration, 2016, 11, 35.	10.8	27
62	Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease. Neurobiology of Disease, 2018, 114, 120-128.	4.4	25
63	A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model. Scientific Reports, 2018, 8, 17574.	3.3	25
64	Simultaneous analysis of dendritic spine density, morphology and excitatory glutamate receptors during neuron maturation in vitro by quantitative immunocytochemistry. Journal of Neuroscience Methods, 2012, 207, 137-147.	2.5	20
65	Apolipoprotein E isotype-dependent modulation of microRNA-146a in plasma and brain. NeuroReport, 2016, 27, 791-795.	1.2	18
66	Effects of Docosahexaenoic Acid and Its Peroxidation Product on Amyloid-β Peptide-Stimulated Microglia. Molecular Neurobiology, 2020, 57, 1085-1098.	4.0	18
67	Discovery of Nonlipogenic ABCA1 Inducing Compounds with Potential in Alzheimer's Disease and Type 2 Diabetes. ACS Pharmacology and Translational Science, 2021, 4, 143-154.	4.9	17
68	Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS ONE, 2017, 12, e0188340.	2.5	14
69	Relevance of transgenic mouse models for Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2021, 177, 1-48.	1.7	13
70	Cytosolic Phospholipase A2 Facilitates Oligomeric Amyloid-Î ² Peptide Association with Microglia via Regulation of Membrane-Cytoskeleton Connectivity. Molecular Neurobiology, 2019, 56, 3222-3234.	4.0	12
71	Arabidopsis thaliana extracts optimized for polyphenols production as potential therapeutics for the APOE-modulated neuroinflammation characteristic of Alzheimer's disease in vitro. Scientific Reports, 2016, 6, 29364.	3.3	11
72	Metabolomic analysis of a selective ABCA1 inducer in obesogenic challenge provides a rationale for therapeutic development. EBioMedicine, 2021, 66, 103287.	6.1	11

#	Article	IF	CITATIONS
73	APOE4 genotype or ovarian hormone loss influence open field exploration in an EFAD mouse model of Alzheimer's disease. Hormones and Behavior, 2022, 140, 105124.	2.1	7
74	APOE4 homozygote females are resistant to the beneficial effects of 17β-estradiol on memory and CA1 dendritic spine density in the EFAD mouse model of Alzheimer's disease. Neurobiology of Aging, 2022, 118, 13-24.	3.1	7
75	The detrimental effects of APOE4 on risk for Alzheimer's disease may result from altered dendritic spine density, synaptic proteins, and estrogen receptor alpha. Neurobiology of Aging, 2022, 112, 74-86.	3.1	6
76	P4-360: INTERACTIONS OF APOE GENOTYPE AND RXR AGONISTS ON SOLUBLE AB AND OLIGOMERIC AB. , 2014, 10, P920-P921.		0
77	O5â€06â€03: NEW PARADIGMS IN TREATING APOE4â€DRIVEN DEMENTIA DISEASES: PROOF OF CONCEPT AND TRANSLATIONAL FINDINGS FROM STUDIES WITH THE ABCA1 AGONIST THERAPEUTIC CS6253. Alzheimer's and Dementia, 2018, 14, P1658.	0.8	0
78	P1â€110: THE EFFECT OF SEX AND <i>APOE</i> ON AD PATHOLOGY DURING AGING IN EFAD MICE. Alzheimer's and Dementia, 2018, 14, P313.	0.8	0
79	P2â€126: THE ROLE OF APOE GENOTYPE, SEX, AND 17βâ€ESTRADIOL IN MEMORY CONSOLIDATION IN A MOUS MODEL OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P717.	E _{0.8}	0
80	Effects of APOE Genotype and Sex on the Plasma Lipoprotein Profile of the EFAD Mouse. FASEB Journal, 2019, 33, lb161.	0.5	0
81	Determining Accuracy of oAb as a Mechanistic Biomarker for Alzheimer's Disease in Human Plasma. FASEB Journal, 2019, 33, lb159.	0.5	0
82	The effects of sex and APOE genotype on the gut microbiome in EFAD transgenic mice. FASEB Journal, 2019, 33, lb160.	0.5	0