List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205960/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	â€~Trapped rainbow' storage of light in metamaterials. Nature, 2007, 450, 397-401.	27.8	763
2	Active nanoplasmonic metamaterials. Nature Materials, 2012, 11, 573-584.	27.5	502
3	Overcoming Losses with Gain in a Negative Refractive Index Metamaterial. Physical Review Letters, 2010, 105, 127401.	7.8	251
4	Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering. Science, 2017, 356, 1260-1264.	12.6	174
5	Nanophotonic Platforms for Enhanced Chiral Sensing. ACS Photonics, 2018, 5, 2669-2675.	6.6	138
6	Ultraslow waves on the nanoscale. Science, 2017, 358, .	12.6	107
7	Accessible Superchiral Near-Fields Driven by Tailored Electric and Magnetic Resonances in All-Dielectric Nanostructures. ACS Photonics, 2019, 6, 1939-1946.	6.6	82
8	Coherent Amplification and Noise in Gain-Enhanced Nanoplasmonic Metamaterials: A Maxwell-Bloch Langevin Approach. ACS Nano, 2012, 6, 2420-2431.	14.6	79
9	Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability. Physical Review B, 2006, 73, .	3.2	78
10	Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers [Invited]. Optics Express, 2016, 24, 17916.	3.4	76
11	Gain and plasmon dynamics in active negative-index metamaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3525-3550.	3.4	67
12	Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures. Applied Physics Letters, 2006, 89, 201103.	3.3	60
13	Metamaterials with Quantum Gain. Science, 2013, 339, 654-655.	12.6	59
14	Completely Stopped and Dispersionless Light in Plasmonic Waveguides. Physical Review Letters, 2014, 112, 167401.	7.8	58
15	Theory of Light Amplification in Active Fishnet Metamaterials. Physical Review Letters, 2011, 107, 167405.	7.8	55
16	Negative-permeability electromagnetically induced transparent and magnetically active metamaterials. Physical Review B, 2010, 81, .	3.2	43
17	Ultrabroadband 3D invisibility with fast-light cloaks. Nature Communications, 2019, 10, 4859.	12.8	30
18	Dual Nanoresonators for Ultrasensitive Chiral Detection. ACS Photonics, 2021, 8, 1754-1762.	6.6	30

#	Article	IF	CITATIONS
19	FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides. Journal of Optics, 2009, 11, 114027.	1.5	29
20	Tsakmakidis et al. reply. Nature, 2008, 455, E11-E12.	27.8	27
21	Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials. Physical Review B, 2012, 85, .	3.2	27
22	Extreme control of light in metamaterials: Complete and loss-free stopping of light. Physica B: Condensed Matter, 2012, 407, 4066-4069.	2.7	26
23	Evanescent gain for slow and stopped light in negative refractive index heterostructures. Physical Review B, 2011, 84, .	3.2	23
24	Micrometer size polarization independent depletion-type photonic modulator in Silicon On Insulator. Optics Express, 2007, 15, 5879.	3.4	22
25	Spherical optomagnonic microresonators: Triple-resonant photon transitions between Zeeman-split Mie modes. Physical Review B, 2020, 101, .	3.2	21
26	Ultralow-loss optical diamagnetism in silver nanoforests. Journal of Optics, 2009, 11, 114026.	1.5	20
27	Topological, nonreciprocal, and multiresonant slow light beyond the time-bandwidth limit. Applied Physics Letters, 2021, 119, .	3.3	13
28	Nonreciprocal cavities and the time-bandwidth limit: comment. Optica, 2020, 7, 1097.	9.3	12
29	Comment on "Spaser Action, Loss Compensation, and Stability in Plasmonic Systems with Gainâ€. Physical Review Letters, 2011, 107, 259701; discussion 259702.	7.8	11
30	Three-Dimensional Giant Invisibility to Superscattering Enhancement Induced by Zeeman-Split Modes. ACS Photonics, 2021, 8, 1407-1412.	6.6	11
31	Magnetic switching of Kerker scattering in spherical microresonators. Nanophotonics, 2020, 9, 4033-4041.	6.0	10
32	Complete bandgap switching in photonic opals. New Journal of Physics, 2009, 11, 073011.	2.9	9
33	Hyperpolarizability of Plasmonic Meta-Atoms in Metasurfaces. Nano Letters, 2021, 21, 51-59.	9.1	9
34	Engineering Subwavelength Nanoantennas in the Visible by Employing Resonant Anisotropic Nanospheroids. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-12.	2.9	8
35	Stopped-light nanolasing in optical magic-angle graphene. Nature Nanotechnology, 2021, 16, 1048-1049.	31.5	8
36	Systematic modal analysis of 3-D dielectric waveguides using conventional and high accuracy nonstandard FDTD algorithms. IEEE Photonics Technology Letters, 2005, 17, 2598-2600.	2.5	7

#	Article	IF	CITATIONS
37	Multifunctional plasmonic metasurface demultiplexer and wavelength-polarization controllable beam splitter. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C50.	2.1	7
38	Quantum coherence–driven self-organized criticality and nonequilibrium light localization. Science Advances, 2018, 4, eaaq0465.	10.3	6
39	Arbitrarily high time bandwidth performance in a nonreciprocal optical resonator with broken time invariance. Scientific Reports, 2020, 10, 15752.	3.3	6
40	Light-Alignment Controllable Beam Splitter and Vectorial Displacement Sensor in the Stopped-Light Regime of Plasmonic Metasurfaces. ACS Photonics, 2021, 8, 296-306.	6.6	6
41	Watch your back. Nature, 2008, 451, 27-27.	27.8	5
42	Slow light in metamaterial heterostructures. Proceedings of SPIE, 2008, , .	0.8	5
43	Trapped Rainbow Storage of Light in Metamaterials. Advances in Science and Technology, 0, , .	0.2	5
44	Complete and robust bandgap switching in double-inverse-opal photonic crystals. Applied Physics Letters, 2008, 92, 011109.	3.3	4
45	Recent developments in the study of slow light in complex photonic materials. , 2010, , .		4
46	Plasmonic Nanolasers Without Cavity, Threshold and Diffraction Limit using Stopped Light. , 2012, , .		3
47	Unconventional time-bandwidth performance of resonant cavities with nonreciprocal coupling. Physical Review A, 2021, 103, .	2.5	3
48	Reply to â€~Physical limitations on broadband invisibility based on fast-light media'. Nature Communications, 2021, 12, 2800.	12.8	3
49	Full-wave electromagnetic modelling of an InP/InGaAs travelling-wave heterojunction phototransistor. Journal Physics D: Applied Physics, 2006, 39, 1805-1814.	2.8	2
50	Slow and stopped light in metamaterials. , 2008, , .		2
51	Slow and stopped light in metamaterials: the trapped rainbow. , 2008, , .		2
52	Trapped rainbow storage of light in metamaterials. , 2010, , .		2
53	Compensation of Losses in Slow-Light Negative-Index Waveguides By Evanescent Pumping. , 2010, , .		2
54	Gain in negative-refractive-index slow-light waveguides. Proceedings of SPIE, 2011, , .	0.8	2

#	Article	IF	CITATIONS
55	Slow and stopped-light lasing in active plasmonic metamaterials. , 2012, , .		2
56	Tunable polarization-sensitive optical nanoswitches based on spheroidal core-shell nanoparticles. Journal of Optics (United Kingdom), 2018, 20, 085004.	2.2	2
57	Gain enhancement of circular waveguide antennas using nearâ€zero index metamaterials. Microwave and Optical Technology Letters, 2019, 61, 1617-1621.	1.4	2
58	Active THz metasurfaces for compact isolation. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C191.	2.1	2
59	Analytical Methods for Causality Evaluation of Photonic Materials. Materials, 2022, 15, 1536.	2.9	2
60	Exceeding the classical time-bandwidth product in nonlinear time-invariant systems. Nonlinear Dynamics, 0, , 1.	5.2	2
61	Dynamics of amplification in a nanoplasmonic metamaterial. Applied Physics A: Materials Science and Processing, 2012, 107, 77-82.	2.3	1
62	True stopping of light: a new regime for nanophotonics. Proceedings of SPIE, 2014, , .	0.8	1
63	Three-dimensional Weyl topology in one-dimensional photonic structures. Light: Science and Applications, 2022, 11, .	16.6	1
64	FDTD modeling of an InP traveling-wave HPT. , 2004, , .		0
65	Slow light in negative-index waveguide-heterostructures. Proceedings of SPIE, 2007, , .	0.8	0
66	Optical magnetism in metal nanoforests. Proceedings of SPIE, 2009, , .	0.8	0
67	Ultraslow and stored light in metamaterials: new developments and verifications. Proceedings of SPIE, 2009, , .	0.8	Ο
68	Gain in negative-index metamaterials and slow-light waveguides. Proceedings of SPIE, 2010, , .	0.8	0
69	Dynamics of light amplification and gain in nano-plasmonic fishnet metamaterials. Proceedings of SPIE, 2011, , .	0.8	0
70	From Loss-Compensation to Amplification and Lasing in Active Nanoplasmonic Metamaterials. , 2012, , .		0
71	Nonlinear mode competition in a lasing nanoplasmonic metamaterial. , 2012, , .		0
72	Quantum-Coherently Assisted Deep-UV Localization of Photonic States in Active Stopped-Light Plasmonic Heterostructures. , 2015, , .		0

5

#	Article	IF	CITATIONS
73	Predicting the optical response of plasmonic metamolecules using equivalent circuit models. , 2017, , .		0
74	Overcoming the time-bandwidth limit. , 2018, , .		0
75	Optical Delay Beyond the Time-Bandwidth Limit: From Pipe Dream to Reality. , 2019, , .		0
76	Finite-difference time-domain analyses of active cloaking for electrically-large objects. Optics Express, 2021, 29, 3055.	3.4	0
77	Stopping fast waves with a left-handed metamaterial slab. , 2006, , .		0
78	Slow Light in Tapered Negative-Refractive-Index Waveguides. , 2007, , .		0
79	Stopped Light in Negative-Index Metamaterial Heterostructures. , 2008, , .		0
80	â€~Trapped Rainbow' Schemes for Storing Light in Engineered Waveguides. , 2009, , .		0
81	Recent Advances in â€~Trapped Rainbow' Techniques for Stopping Light. , 2009, , .		0
82	Slow Light Amplification and Nano-Lasing in Active Plasmonic Metamaterials. , 2011, , .		0
83	Quantum-Coherently Assisted Deep-UV Localization of Light in Active Plasmonic Heterostructures. , 2015, , .		0
84	Quantum-Coherence Emergent Self-Organized Criticality and Nonequilibrium Light Localization. , 2016, , .		0
85	Demonstration of ultra-high time-bandwidth product in a non-reciprocal fiber-optic system. , 2018, , .		0
86	Theoretical and numerical study of the time-bandwidth product in resonant cavities with nonreciprocal coupling. , 2020, , .		0
87	Duality Symmetry in Hybrid Nanoresonators for Chiral Sensing. , 2020, , .		0