Kunlin Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustainable Chemistry and Engineering, 2015, 3, 821-832.	6.7	379
2	Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-based Fluids. ACS Applied Materials & Interfaces, 2015, 7, 5006-5016.	8.0	283
3	Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Industrial & Engineering Chemistry Research, 2016, 55, 133-143.	3.7	152
4	Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation. ACS Sustainable Chemistry and Engineering, 2016, 4, 4385-4395.	6.7	116
5	Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers, 2015, 115, 207-214.	10.2	99
6	Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 58-66.	4.7	93
7	Soy Protein Isolate As Fluid Loss Additive in Bentonite–Water-Based Drilling Fluids. ACS Applied Materials & Interfaces, 2015, 7, 24799-24809.	8.0	78
8	Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls. Carbohydrate Polymers, 2017, 155, 163-172.	10.2	74
9	Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Science and Technology, 2015, 49, 987-1001.	3.2	73
10	Performance of low solid bentonite drilling fluids modified by cellulose nanoparticles. Journal of Natural Gas Science and Engineering, 2016, 34, 1403-1411.	4.4	70
11	pH-Responsive Water-Based Drilling Fluids Containing Bentonite and Chitin Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 3783-3795.	6.7	69
12	Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydrate Polymers, 2016, 153, 445-454.	10.2	63
13	Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials. ACS Applied Materials & Interfaces, 2015, 7, 15108-15116.	8.0	58
14	Thermoresponsive Copolymer Poly(<i>N</i> -Vinylcaprolactam) Grafted Cellulose Nanocrystals: Synthesis, Structure, and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 7439-7447.	6.7	51
15	Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. Journal of Materials Science, 2014, 49, 1734-1742.	3.7	49
16	Using Cellulose Nanocrystals as a Sustainable Additive to Enhance Hydrophilicity, Mechanical and Thermal Properties of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blend. ACS Sustainable Chemistry and Engineering, 2015, 3, 574-582.	6.7	49
17	Deep-Eutectic Solvents as MWCNT Delivery Vehicles in the Synthesis of Functional Poly(HIPE) Nanocomposites for Applications as Selective Sorbents. ACS Applied Materials & Interfaces, 2016, 8, 31295-31303.	8.0	38
18	Lignin-Modified Carbon Nanotube/Graphene Hybrid Coating as Efficient Flame Retardant. International Journal of Molecular Sciences, 2017, 18, 2368.	4.1	36

KUNLIN SONG

#	Article	IF	CITATIONS
19	Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering. Materials, 2017, 10, 68.	2.9	35
20	Poly(vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose, 2015, 22, 2431-2441.	4.9	34
21	Structure and thermal properties of tar from gasification of agricultural crop residue. Journal of Thermal Analysis and Calorimetry, 2015, 119, 27-35.	3.6	33
22	High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials. Journal of Hazardous Materials, 2020, 384, 121283.	12.4	31
23	Thermal decomposition of fire-retarded wood flour/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2016, 123, 309-318.	3.6	28
24	Thermo-physical properties of pretreated agricultural residues for bio-hydrogen production using thermo-gravimetric analysis. International Journal of Hydrogen Energy, 2016, 41, 5234-5242.	7.1	26
25	Ethylene Oligomerization over Ni–Hβ Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 10241-10250.	3.7	26
26	On the stability and chemorheology of a urea choline chloride deep-eutectic solvent as an internal phase emulsions. RSC Advances, 2016, 6, 81694-81702.	3.6	25
27	Comparative Analysis of two DNA Extraction Protocols from Fresh and Dried wood of Cunninghamia Lanceolata (Taxodiaceae). IAWA Journal, 2012, 33, 441-456.	2.7	24
28	Fabricating electrospun nanofibers with antimicrobial capability: A facile route to recycle biomass tar. Fuel, 2015, 150, 123-130.	6.4	21
29	Oligomerization of supercritical ethylene over nickel-based silica-alumina catalysts. Chemical Engineering Science, 2019, 197, 212-222.	3.8	16
30	Influence of Microfibril angle on within-tree variations in the Mechanical properties of chinese fir (Cunninghamia Lanceolata). IAWA Journal, 2011, 32, 431-442.	2.7	15
31	Phenotypic and Comparative Transcriptome Analysis of Different Ploidy Plants in Dendrocalamus latiflorus Munro. Frontiers in Plant Science, 2017, 8, 1371.	3.6	14
32	Research on utilizing recycled plastic to make environment-friendly plywood. Forestry Studies in China, 2010, 12, 218-222.	0.4	11
33	Non-Isothermal Crystallization of Poly (vinylidene fluoride)/Poly (methyl methacrylate)/Cellulose Nanocrystal Nanocomposites. International Journal of Polymer Analysis and Characterization, 2014, 19, 332-341.	1.9	11
34	Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties. Journal of Materials Science, 2017, 52, 6432-6441.	3.7	10
35	Variation of Microfibril Angle in Plantation trees of Cunninghamia Lanceolata Determined by pit Apertures and X-Ray Diffraction. IAWA Journal, 2011, 32, 77-87.	2.7	7
36	Effect of Durability Treatment on Moisture Sorption Properties of Wood-Plastic Composites. BioResources, 2014, 9, .	1.0	7

KUNLIN SONG

#	Article	IF	CITATIONS
37	Effect of Durability Treatment on Ultraviolet Resistance, Strength, and Surface Wettability of Wood Plastic Composite. BioResources, 2014, 9, .	1.0	6
38	Structure–property relationships of hydrothermally treated western hemlock. SN Applied Sciences, 2019, 1, 1.	2.9	5
39	The Research Progress in Pretreatment Techniques of Self-Bonding Composites. Advanced Materials Research, 0, 113-116, 2337-2343.	0.3	1
40	Study on Preparation and Properties of Recycled Plastic-Poplar Plywood. Applied Mechanics and Materials, 0, 121-126, 2917-2921.	0.2	0