Zheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/820582/publications.pdf

Version: 2024-02-01

10	127	7	10
papers	citations	h-index	g-index
10	10	10	164
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genomics, 2017, 18, 715.	2.8	30
2	Enhanced Fluorescent Siderophore Biosynthesis and Loss of Phenazine-1-Carboxamide in Phenotypic Variant of Pseudomonas chlororaphis HT66. Frontiers in Microbiology, 2018, 9, 759.	3.5	19
3	Pleiotropic control of antibiotic biosynthesis, flagellar operon expression, biofilm formation, and carbon source utilization by RpoN in Pseudomonas protegens H78. Applied Microbiology and Biotechnology, 2018, 102, 9719-9730.	3.6	17
4	GacS/GacA activates pyoluteorin biosynthesis through Gac/Rsmâ€RsmE cascade and RsmA/RsmEâ€driven feedback loop in <scp><i>P</i></scp> <i>seudomonas protegens</i> H78. Molecular Microbiology, 2017, 105, 968-985.	2.5	14
5	The (p)ppGpp-mediated stringent response regulatory system globally inhibits primary metabolism and activates secondary metabolism in Pseudomonas protegens H78. Applied Microbiology and Biotechnology, 2020, 104, 3061-3079.	3.6	13
6	Complete Genome Sequence of Pseudomonas protegens H78, a Plant Growth–Promoting Rhizobacterium. Genome Announcements, 2017, 5, .	0.8	12
7	Improvement of pyoluteorin production in Pseudomonas protegens H78 through engineering its biosynthetic and regulatory pathways. Applied Microbiology and Biotechnology, 2019, 103, 3465-3476.	3.6	9
8	The global regulator Hfq exhibits far more extensive and intensive regulation than Crc in <i>Pseudomonas protegens (i) H78. Molecular Plant Pathology, 2021, 22, 921-938.</i>	4.2	7
9	Lon protease downregulates phenazineâ€1â€carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in <i>Pseudomonas chlororaphis</i> HT66. Molecular Microbiology, 2021, 116, 690-706.	2.5	5
10	The Lon protease negatively regulates pyoluteorin biosynthesis through the Gac/ <scp>Rsmâ€RsmE</scp> cascade and directly degrades the transcriptional activator <scp>PltR</scp> in <i>Pseudomonas protegens</i> <scp>H78</scp> . Environmental Microbiology Reports, 2022, 14, 506-519.	2.4	1