Sophia L Stone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Analysis of the RING-Type Ubiquitin Ligase Family of Arabidopsis. Plant Physiology, 2005, 137, 13-30.	2.3	524
2	Genome Analysis and Functional Characterization of the E2 and RING-Type E3 Ligase Ubiquitination Enzymes of Arabidopsis. Plant Physiology, 2005, 139, 1597-1611.	2.3	365
3	Abiotic stress tolerance mediated by protein ubiquitination. Journal of Experimental Botany, 2012, 63, 599-616.	2.4	355
4	KEEP ON GOING, a RING E3 Ligase Essential for Arabidopsis Growth and Development, Is Involved in Abscisic Acid Signaling. Plant Cell, 2007, 18, 3415-3428.	3.1	347
5	ARC1 Is an E3 Ubiquitin Ligase and Promotes the Ubiquitination of Proteins during the Rejection of Self-Incompatible Brassica Pollen. Plant Cell, 2003, 15, 885-898.	3.1	329
6	Cellular Pathways Regulating Responses to Compatible and Self-Incompatible Pollen in <i>Brassica</i> and <i>Arabidopsis</i> Stigmas Intersect at Exo70A1, a Putative Component of the Exocyst Complex. Plant Cell, 2009, 21, 2655-2671.	3.1	259
7	The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Frontiers in Plant Science, 2014, 5, 135.	1.7	251
8	Abscisic Acid Increases <i>Arabidopsis</i> ABI5 Transcription Factor Levels by Promoting KEG E3 Ligase Self-Ubiquitination and Proteasomal Degradation Â. Plant Cell, 2010, 22, 2630-2641.	3.1	248
9	A Breakdown of Brassica Self-Incompatibility in ARC1 Antisense Transgenic Plants. Science, 1999, 286, 1729-1731.	6.0	230
10	A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family. Plant Physiology, 2004, 134, 59-66.	2.3	192
11	Ubiquitin ligases mediate growth and development by promoting protein death. Current Opinion in Plant Biology, 2007, 10, 624-632.	3.5	150
12	Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin–proteasome system. Journal of Experimental Botany, 2013, 64, 2779-2791.	2.4	136
13	The Arabidopsis RINGâ€ŧype E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1â€aminocyclopropaneâ€1â€carboxylate synthase 7. Plant Journal, 2012, 71, 23-34.	2.8	121
14	Cytoplasmic Degradation of the Arabidopsis Transcription Factor ABSCISIC ACID INSENSITIVE 5 Is Mediated by the RING-type E3 Ligase KEEP ON GOING. Journal of Biological Chemistry, 2013, 288, 20267-20279.	1.6	117
15	<scp>ABA</scp> and the ubiquitin E3 ligase <scp>KEEP ON GOING</scp> affect proteolysis of the <i><scp>A</scp>rabidopsis thaliana</i> transcription factors <scp>ABF</scp> 1 and <scp>ABF</scp> 3. Plant Journal, 2013, 75, 965-976.	2.8	114
16	Arabidopsis RING E3 Ligase XBAT32 Regulates Lateral Root Production through Its Role in Ethylene Biosynthesis Â. Plant Physiology, 2010, 153, 1587-1596.	2.3	99
17	ATL9, a RING Zinc Finger Protein with E3 Ubiquitin Ligase Activity Implicated in Chitin- and NADPH Oxidase-Mediated Defense Responses. PLoS ONE, 2010, 5, e14426.	1.1	94
18	Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. International Review of Cell and Molecular Biology, 2019, 343, 65-110.	1.6	86

SOPHIA L STONE

#	Article	IF	CITATIONS
19	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	2.3	76
20	E3 ubiquitin ligases and abscisic acid signaling. Plant Signaling and Behavior, 2011, 6, 344-348.	1.2	38
21	The RING-Type E3 Ligase XBAT35.2 Is Involved in Cell Death Induction and Pathogen Response. Plant Physiology, 2017, 175, 1469-1483.	2.3	37
22	The molecular biology of self-incompatibility systems in flowering plants. Plant Cell, Tissue and Organ Culture, 2001, 67, 93-114.	1.2	35
23	Purple Acid Phosphatase5 is required for maintaining basal resistance against Pseudomonas syringaein Arabidopsis. BMC Plant Biology, 2013, 13, 107.	1.6	34
24	Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. Planta, 2019, 250, 1191-1214.	1.6	33
25	Degradation of the stress-responsive enzyme formate dehydrogenase by the RING-type E3 ligase Keep on Going and the ubiquitin 26S proteasome system. Plant Molecular Biology, 2018, 96, 265-278.	2.0	29
26	Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis. Plant Signaling and Behavior, 2010, 5, 1425-1429.	1.2	28
27	Regulation of ABI5 turnover by reversible post-translational modifications. Plant Signaling and Behavior, 2014, 9, e27577.	1.2	25
28	Regulation of ethylene biosynthesis through protein degradation. Plant Signaling and Behavior, 2012, 7, 1438-1442.	1.2	24
29	Arabidopsis RINGâ€ŧype E3 ubiquitin ligase XBAT35.2 promotes proteasomeâ€dependent degradation of ACD11 to attenuate abiotic stress tolerance. Plant Journal, 2020, 104, 1712-1723.	2.8	23
30	Optimal level of purple acid phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae. Frontiers in Plant Science, 2015, 6, 568.	1.7	19
31	The Kinase Activity of Calcineurin B-like Interacting Protein Kinase 26 (CIPK26) Influences Its Own Stability and that of the ABA-regulated Ubiquitin Ligase, Keep on Going (KEG). Frontiers in Plant Science, 2017, 8, 502.	1.7	18
32	Low Mannitol Concentrations in Arabidopsis thaliana Expressing Ectocarpus Genes Improve Salt Tolerance. Plants, 2020, 9, 1508.	1.6	10
33	The Ubiquitin Proteasome System and Nutrient Stress Response. Frontiers in Plant Science, 2022, 13, .	1.7	6
34	A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. International Journal of Molecular Sciences, 2021, 22, 1971.	1.8	4
35	Editorial: Structure, Function, and Evolution of E3 Ligases and Targets. Frontiers in Plant Science, 2021, 12, 767281.	1.7	3

Ubiquitination of Plant Transcription Factors. , 2016, , 395-409.