Gabriele Magna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205438/publications.pdf

Version: 2024-02-01

56	798	16	27
papers	citations	h-index	g-index
58	58	58	852 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Combinatorial selectivity with an array of phthalocyanines functionalized TiO ₂ /ZnO heterojunction thin film sensors. Nanotechnology, 2022, 33, 075503.	1.3	10
2	Polythiophene based fluorimetric insight into minute styrene concentration in solution and gas phase. Optical Materials, 2022, 123, 111848.	1.7	1
3	Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors, 2022, 22, 2649.	2.1	17
4	The Chemical Sensitivity of Hybrid Porphyrin Materials. ECS Meeting Abstracts, 2022, MA2022-01, 939-939.	0.0	0
5	Porphyrinoids coated silica nanoparticles capacitive sensors for COVID-19 detection from the analysis of blood serum volatolome. Sensors and Actuators B: Chemical, 2022, 369, 132329.	4.0	3
6	Light-Activated Porphyrinoid-Capped Nanoparticles for Gas Sensing. ACS Applied Nano Materials, 2021, 4, 414-424.	2.4	19
7	The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing. Dalton Transactions, 2021, 50, 5724-5731.	1.6	4
8	Recent Advances in Chemical Sensors Using Porphyrin-Carbon Nanostructure Hybrid Materials. Nanomaterials, 2021, 11, 997.	1.9	21
9	Chirality induction to achiral molecules by silicaâ€coated chiral molecular assemblies. Chirality, 2021, 33, 494-505.	1.3	6
10	Seeding Chiral Ensembles of Prolinated Porphyrin Derivatives on Glass Surface: Simple and Rapid Access to Chiral Porphyrin Films. Frontiers in Chemistry, 2021, 9, 804893.	1.8	4
11	Sensor-Embedded Face Masks for Detection of Volatiles in Breath: A Proof of Concept Study. Chemosensors, 2021, 9, 356.	1.8	6
12	Tuning the morphology of mesoscopic structures of porphyrin macrocycles functionalized by an antimicrobial peptide. Journal of Porphyrins and Phthalocyanines, 2020, 24, 920-928.	0.4	4
13	Tunable Supramolecular Chirogenesis in the Self-Assembling of Amphiphilic Porphyrin Triggered by Chiral Amines. International Journal of Molecular Sciences, 2020, 21, 8557.	1.8	5
14	Porphyrins Through the Looking Glass: Spectroscopic and Mechanistic Insights in Supramolecular Chirogenesis of New Self-Assembled Porphyrin Derivatives. Frontiers in Chemistry, 2020, 8, 587842.	1.8	10
15	The Self-Aggregation of Porphyrins with Multiple Chiral Centers in Organic/Aqueous Media: The Case of Sugar- and Steroid-Porphyrin Conjugates. Molecules, 2020, 25, 4544.	1.7	11
16	Experimental determination of the mass sensitivity of quartz microbalances coated by an optical dye. Sensors and Actuators B: Chemical, 2020, 320, 128373.	4.0	14
17	Self-Repairing classification algorithms for chemical sensor array. Sensors and Actuators B: Chemical, 2019, 297, 126721.	4.0	15
18	Kinetic and spectroscopic studies on the chiral self-aggregation of amphiphilic zinc and copper (<scp> </scp>)-prolinate-tetraarylporphyrin derivatives in different aqueous media. Organic and Biomolecular Chemistry, 2019, 17, 1113-1120.	1.5	12

#	Article	IF	CITATIONS
19	Gas Sensing with Porphyrin Functionalized Metal Oxide Nanostructures. Proceedings (mdpi), 2019, 14, 28.	0.2	О
20	Chiral Selectivity of Porphyrin–ZnO Nanoparticle Conjugates. ACS Applied Materials & Company (2019, 11, 12077-12087.	4.0	42
21	The Assembly of Porphyrin Systems in Well-Defined Nanostructures: An Update. Molecules, 2019, 24, 4307.	1.7	47
22	Grafting Copper and Gallium Corroles onto Zinc Oxide Nanoparticles. ChemPlusChem, 2019, 84, 154-160.	1.3	5
23	Unsupervised On-Line Selection of Training Features for a robust classification with drifting and faulty gas sensors. Sensors and Actuators B: Chemical, 2018, 258, 1242-1251.	4.0	20
24	Porphyrin-Functionalized Zinc Oxide Nanostructures for Sensor Applications. Sensors, 2018, 18, 2279.	2.1	25
25	Surface arrangement dependent selectivity of porphyrins gas sensors. Sensors and Actuators B: Chemical, 2017, 251, 524-532.	4.0	30
26	Robust classification of biological samples in atomic force microscopy images via multiple filtering cooperation. Knowledge-Based Systems, 2017, 133, 221-233.	4.0	6
27	βâ€Acroleinâ€Substituted Corroles: A Route to the Preparation of Functionalized Polyacrolein Microspheres for Chemical Sensor Applications. Chemistry - A European Journal, 2017, 23, 14819-14826.	1.7	14
28	Interaction of Pyrene Ligands with Neat and Defective Two Dimensional ZnO: A First Principles Study. MRS Advances, 2017, 2, 2799-2805.	0.5	0
29	Porphyrins for olfaction mimic: The Rome Tor Vergata approach. Journal of Porphyrins and Phthalocyanines, 2017, 21, 769-781.	0.4	15
30	Enhance of Sensitivity of Corrole Functionalized Polymeric Microspheres Coated Quartz Microbalances. Proceedings (mdpi), 2017, 1, 406.	0.2	O
31	Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array. Sensors, 2017, 17, 747.	2.1	17
32	Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system. Knowledge-Based Systems, 2016, 101, 60-70.	4.0	32
33	Interaction of VOCs with pyrene tetratopic ligands layered on ZnO nanorods under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 62-69.	2.0	17
34	Room Temperature CO Detection by Hybrid Porphyrin-ZnO Nanoparticles. Procedia Engineering, 2015, 120, 71-74.	1.2	9
35	An On-line Reconfigurable Classification Algorithm Improves the Long-term Stability of Gas Sensor Arrays in Case of Faulty and Drifting Sensors. Procedia Engineering, 2015, 120, 249-252.	1.2	4
36	The gas sensing properties of one-pot prepared porphyrin-ZnO nanoparticles. , 2015, , .		1

#	Article	IF	Citations
37	Combining porphyrins and pH indicators for analyte detection. Analytical and Bioanalytical Chemistry, 2015, 407, 3975-3984.	1.9	16
38	Stable Odor Recognition by a neuro-adaptive Electronic Nose. Scientific Reports, 2015, 5, 10960.	1.6	14
39	Adaptive classification model based on artificial immune system for breast cancer detection., 2015,,.		10
40	Photo-assisted chemical sensors. Proceedings of SPIE, 2014, , .	0.8	0
41	Cooperative classifiers for reconfigurable sensor arrays. Sensors and Actuators B: Chemical, 2014, 199, 83-92.	4.0	37
42	The influence of film morphology and illumination conditions on the sensitivity of porphyrins-coated ZnO nanorods. Analytica Chimica Acta, 2014, 810, 86-93.	2.6	27
43	Drift Correction in a Porphyrin-coated ZnO Nanorods Gas Sensor. Procedia Engineering, 2014, 87, 608-611.	1.2	3
44	Automatic Fault Identification and On-line Unsupervised Calibration of Replaced Sensors by Means of Cooperative Classifiers. Procedia Engineering, 2014, 87, 855-858.	1.2	2
45	The light enhanced gas selectivity of one-pot grown porphyrins coated ZnO nanorods. Sensors and Actuators B: Chemical, 2013, 188, 475-481.	4.0	33
46	An adaptive classification model based on the Artificial Immune System for chemical sensor drift mitigation. Sensors and Actuators B: Chemical, 2013, 177, 1017-1026.	4.0	53
47	Sharing data processing among replicated optical sensor arrays. Sensors and Actuators B: Chemical, 2013, 179, 252-258.	4.0	6
48	Gas Sensitivity of the Surface Potential of Hybrid Porphyrin-ZnO Nanorods. Procedia Engineering, 2012, 47, 446-449.	1.2	2
49	An Ensemble of Adaptive Classifiers for Improving Faulty and Drifting Sensor Performance. Procedia Engineering, 2012, 47, 1275-1278.	1.2	2
50	The influence of gas adsorption on photovoltage in porphyrin coated ZnO nanorods. Journal of Materials Chemistry, 2012, 22, 20032.	6.7	40
51	Gas-Sensitive Photoconductivity of Porphyrin-Functionalized ZnO Nanorods. Journal of Physical Chemistry C, 2012, 116, 9151-9157.	1.5	90
52	Indicators Blends Extend the Receptive Field of Colorimetric Chemical Sensors. Procedia Engineering, 2012, 47, 1189-1190.	1.2	1
53	Gas Effect On The Surface Photovoltage Of Porphyrin Functionalized ZnO Nanorods. Advanced Materials Letters, 2012, 3, 442-448.	0.3	5
54	Facile sensors replacement in optical gas sensors array. Procedia Engineering, 2011, 25, 35-38.	1.2	2

#	Article	IF	CITATIONS
55	Monocarboxy Tetraphenylporphyrin functionalized ZnO nanorods photoactivated gas sensor. Procedia Engineering, 2011, 25, 1333-1336.	1.2	3
56	Gas Sensitivity of Blends of Metalloporphyrins and Colorimetric Acid-Base Indicators. Procedia Engineering, 2011, 25, 1413-1416.	1.2	5