Alexandra M Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205372/publications.pdf

Version: 2024-02-01

201 papers

32,358 citations

68 h-index 171

g-index

210 all docs

210 docs citations

210 times ranked

22549 citing authors

#	Article	IF	Citations
1	Long-term monitoring reveals topographical features and vegetation that explain winter habitat use of an Arctic rodent. Arctic Science, 2022, 8, 349-361.	0.9	2
2	Variation in nectar quality across 34 grassland plant species. Plant Biology, 2022, 24, 134-144.	1.8	21
3	The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems and Environment, 2022, 323, 107680.	2.5	21
4	Small clear-cuts in managed forests support trap-nesting bees, wasps and their parasitoids. Forest Ecology and Management, 2022, 509, 120076.	1.4	9
5	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
6	Critical links between biodiversity and health in wild bee conservation. Trends in Ecology and Evolution, 2022, 37, 309-321.	4.2	48
7	Flowering resources modulate the sensitivity of bumblebees to a common fungicide. Science of the Total Environment, 2022, 829, 154450.	3.9	19
8	Pollinator enhancement in agriculture: comparing sown flower strips, hedges and sown hedge herb layers in apple orchards. Biodiversity and Conservation, 2022, 31, 433-451.	1.2	12
9	No evidence for impaired solitary bee fitness following pre-flowering sulfoxaflor application alone or in combination with a common fungicide in a semi-field experiment. Environment International, 2022, 164, 107252.	4.8	8
10	Multiple forest structural elements are needed to promote beetle biomass, diversity and abundance. Forest Ecosystems, 2022, 9, 100056.	1.3	13
11	Artisanal mining impacts small mammals while chainsaw milling is a more sustainable practice in Ghana. Biodiversity and Conservation, 2021, 30, 295-310.	1.2	4
12	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	1.7	21
13	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
14	Multi-trophic communities re-establish with canopy cover and microclimate in a subtropical forest biodiversity experiment. Oecologia, 2021, 196, 289-301.	0.9	12
15	Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic and Applied Ecology, 2021, 53, 134-142.	1.2	8
16	Environmentally-friendly and organic management practices enable complementary diversification of plantâ€"bumblebee food webs. Basic and Applied Ecology, 2021, 53, 164-174.	1.2	6
17	Sulfoxaflor insecticide and azoxystrobin fungicide have no major impact on honeybees in a realistic-exposure semi-field experiment. Science of the Total Environment, 2021, 778, 146084.	3.9	26
18	Opportunities to reduce pollination deficits and address production shortfalls in an important insectâ€pollinated crop. Ecological Applications, 2021, 31, e02445.	1.8	24

#	Article	IF	CITATIONS
19	Using ecological and field survey data to establish a national list of the wild bee pollinators of crops. Agriculture, Ecosystems and Environment, 2021, 315, 107447.	2.5	24
20	Managementâ€dependent effects of pollinator functional diversity on apple pollination services: A response–effect trait approach. Journal of Applied Ecology, 2021, 58, 2843-2853.	1.9	26
21	Overlooked jewels: Existing habitat patches complement sown flower strips to conserve pollinators. Biological Conservation, 2021, 261, 109263.	1.9	10
22	Biodiversity in European agricultural landscapes: transformative societal changes needed. Trends in Ecology and Evolution, 2021, 36, 1067-1070.	4.2	29
23	Reprint of: Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic and Applied Ecology, 2021, 55, 124-132.	1.2	0
24	Wild bees benefit from structural complexity enhancement in a forest restoration experiment. Forest Ecology and Management, 2021, 496, 119412.	1.4	16
25	Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. Environment International, 2021, 157, 106813.	4.8	45
26	Machine learning algorithms to infer traitâ€matching and predict species interactions in ecological networks. Methods in Ecology and Evolution, 2020, 11, 281-293.	2.2	82
27	International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 2020, 4, 174-176.	3.4	176
28	Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. Journal of Insect Conservation, 2020, 24, 187-197.	0.8	15
29	Insect abundance in managed forests benefits from multi-layered vegetation. Basic and Applied Ecology, 2020, 48, 124-135.	1.2	34
30	Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nature Ecology and Evolution, 2020, 4, 1150-1152.	3.4	54
31	Exotic garden plants partly substitute for native plants as resources for pollinators when native plants become seasonally scarce. Oecologia, 2020, 194, 465-480.	0.9	51
32	A novel method to measure hairiness in bees and other insect pollinators. Ecology and Evolution, 2020, 10, 2979-2990.	0.8	24
33	Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multiâ€scale approach. Ecology and Evolution, 2020, 10, 1489-1509.	0.8	56
34	Inter-Individual Nectar Chemistry Changes of Field Scabious, Knautia arvensis. Insects, 2020, 11, 75.	1.0	13
35	Slug activity density increases seed predation independently of an urban–rural gradient. Basic and Applied Ecology, 2019, 39, 15-25.	1.2	6
36	Mapping change in biodiversity and ecosystem function research: food webs foster integration of experiments and science policy. Advances in Ecological Research, 2019, , 297-322.	1.4	16

#	Article	IF	Citations
37	Transferring biodiversity-ecosystem function research to the management of â€real-world' ecosystems. Advances in Ecological Research, 2019, 61, 323-356.	1.4	51
38	Effectiveness of agriâ€environmental management on pollinators is moderated more by ecological contrast than by landscape structure or landâ€use intensity. Ecology Letters, 2019, 22, 1493-1500.	3.0	47
39	Optimizing sampling of flying insects using a modified window trap. Methods in Ecology and Evolution, 2019, 10, 1820-1825.	2.2	33
40	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524
41	Benchmarking nesting aids for cavity-nesting bees and wasps. Biodiversity and Conservation, 2019, 28, 3831-3849.	1.2	16
42	Plant composition, not richness, drives occurrence of specialist herbivores. Ecological Entomology, 2019, 44, 833-843.	1.1	11
43	Insect decline and its drivers: Unsupported conclusions in a poorly performed meta-analysis on trends—A critique of Sánchez-Bayo and Wyckhuys (2019). Basic and Applied Ecology, 2019, 37, 20-23.	1.2	20
44	Tree diversity increases robustness of multi-trophic interactions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182399.	1.2	29
45	Responses of small mammals to land restoration after mining. Landscape Ecology, 2019, 34, 473-485.	1.9	10
46	Multiple plant diversity components drive consumer communities across ecosystems. Nature Communications, 2019, 10, 1460.	5.8	139
47	A clue on bee glue: New insight into the sources and factors driving resin intake in honeybees (Apis) Tj ETQq $1\ 1$	0.784314 1.1	rgBT/Overlo
48	Insect conservation in agricultural landscapes: An outlook for policy-relevant research. Gaia, 2019, 28, 342-347.	0.3	6
49	Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People and Nature, $2019, 1, 562-572$.	1.7	32
50	Management tradeâ€offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. Journal of Applied Ecology, 2019, 56, 802-811.	1.9	59
51	Predatory arthropods in apple orchards across Europe: Responses to agricultural management, adjacent habitat, landscape composition and country. Agriculture, Ecosystems and Environment, 2019, 273, 141-150.	2.5	34
52	Forest-edge associated bees benefit from the proportion of tropical forest regardless of its edge length. Biological Conservation, 2018, 220, 149-160.	1.9	29
53	Crop rotation and agriâ€environment schemes determine bumblebee communities via flower resources. Journal of Applied Ecology, 2018, 55, 1714-1724.	1.9	34
54	Relevance of wild and managed bees for human well-being. Current Opinion in Insect Science, 2018, 26, 82-88.	2.2	100

#	Article	IF	CITATIONS
55	Intra- and interspecific tree diversity promotes multitrophic plant–Hemiptera–ant interactions in a forest diversity experiment. Basic and Applied Ecology, 2018, 29, 89-97.	1.2	9
56	Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments. Journal of Economic Entomology, 2018, 111, 1006-1013.	0.8	15
57	Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. Journal of Ecology, 2018, 106, 230-241.	1.9	61
58	Multiâ€trophic guilds respond differently to changing elevation in a subtropical forest. Ecography, 2018, 41, 1013-1023.	2.1	17
59	Organic farming promotes bee abundance in vineyards in Italy but not in South Africa. Journal of Insect Conservation, 2018, 22, 61-67.	0.8	14
60	Tree genetic diversity increases arthropod diversity in willow short rotation coppice. Biomass and Bioenergy, 2018, 108, 338-344.	2.9	11
61	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	6.0	433
62	Chronic dryness and wetness and especially pulsed drought threaten a generalist arthropod herbivore. Oecologia, 2018, 188, 931-943.	0.9	12
63	Pollination of Granadilla (Passiflora ligularis) Benefits From Large Wild Insects. Journal of Economic Entomology, 2018, 111, 1526-1534.	0.8	9
64	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	5.8	169
65	Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Methods in Ecology and Evolution, 2018, 9, 2226-2239.	2.2	64
66	Biodiversity–multifunctionality relationships depend on identity and number of measured functions. Nature Ecology and Evolution, 2018, 2, 44-49.	3.4	155
67	Climate-induced phenological shift of apple trees has diverse effects on pollinators, herbivores and natural enemies. Peerl, 2018, 6, e5269.	0.9	9
68	First mass development of Aedes albopictus (Diptera: Culicidae)â€"its surveillance and control in Germany. Parasitology Research, 2017, 116, 847-858.	0.6	31
69	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
70	Functional flower traits and their diversity drive pollinator visitation. Oikos, 2017, 126, 1020-1030.	1.2	80
71	Crop pollination services at the landscape scale. Current Opinion in Insect Science, 2017, 21, 91-97.	2.2	24
72	Tree species richness attenuates the positive relationship between mutualistic ant–hemipteran interactions and leaf chewer herbivory. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171489.	1.2	10

#	Article	IF	Citations
73	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	0.8	41
74	Ants at Plant Wounds: A Little-Known Trophic Interaction with Evolutionary Implications for Ant-Plant Interactions. American Naturalist, 2017, 190, 442-450.	1.0	15
75	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	1.6	38
76	Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses. Insects, 2017, 8, 15.	1.0	48
77	Predicting the effect of habitat modification on networks of interacting species. Nature Communications, 2017, 8, 792.	5.8	31
78	Biodiversity–ecosystem functioning research in Chinese subtropical forests. Journal of Plant Ecology, 2017, 10, 1-3.	1.2	4
79	Diversity and specificity of hostâ€natural enemy interactions in an urbanâ€rural interface. Ecological Entomology, 2016, 41, 241-252.	1.1	26
80	Tree phylogenetic diversity promotes host–parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160275.	1.2	41
81	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	13.7	404
82	Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere, 2016, 7, e01619.	1.0	87
83	Urban gardens promote bee foraging over natural habitats and plantations. Ecology and Evolution, 2016, 6, 1304-1316.	0.8	91
84	Plant diversity increases spatioâ€temporal niche complementarity in plantâ€pollinator interactions. Ecology and Evolution, 2016, 6, 2249-2261.	0.8	48
85	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	1.8	117
86	A Global Synthesis of Jatropha Cultivation: Insights into Land Use Change and Management Practices. Environmental Science & En	4.6	10
87	Plant density can increase invertebrate postdispersal seedÂpredation in an experimental grassland community. Ecology and Evolution, 2016, 6, 3796-3807.	0.8	12
88	A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions. Biomass and Bioenergy, 2016, 91, 186-195.	2.9	29
89	Habitat management on multiple spatial scales can enhance bee pollination and crop yield in tropical homegardens. Agriculture, Ecosystems and Environment, 2016, 223, 144-151.	2.5	43
90	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	3.3	618

#	Article	IF	Citations
91	Red mason bees cannot compete with honey bees for floral resources in a cage experiment. Ecology and Evolution, 2015, 5, 5049-5056.	0.8	45
92	Pennycress double-cropping does not negatively impact spider diversity. Agricultural and Forest Entomology, 2015, 17, 247-257.	0.7	6
93	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
94	Elementary School Children Contribute to Environmental Research as Citizen Scientists. PLoS ONE, 2015, 10, e0143229.	1.1	14
95	Agroâ€ecosystem services and disâ€services in almond orchards are differentially influenced by the surrounding landscape. Ecological Entomology, 2015, 40, 12-21.	1.1	10
96	Observational natural history and morphological taxonomy are indispensable for future challenges in biodiversity and conservation. Communicative and Integrative Biology, 2015, 8, e992745.	0.6	3
97	Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nature Communications, 2015, 6, 10169.	5.8	37
98	Natural habitat does not mediate vertebrate seed predation as an ecosystem disâ€service to agriculture. Journal of Applied Ecology, 2015, 52, 291-299.	1.9	10
99	Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 2015, 52, 505-513.	1.9	129
100	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	1.5	75
101	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
102	Plant diversity and composition compensate for negative effects of urbanization on foraging bumble bees. Apidologie, 2015, 46, 760-770.	0.9	95
103	Pennycress-corn double-cropping increases ground beetle diversity. Biomass and Bioenergy, 2015, 77, 16-25.	2.9	13
104	Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 2015, 6, 8568.	5.8	399
105	Spatial scale affects seed predation and dispersal in contrasting anthropogenic landscapes. Basic and Applied Ecology, 2015, 16, 726-736.	1.2	9
106	Tree diversity alters the structure of a triâ€trophic network in a biodiversity experiment. Oikos, 2015, 124, 827-834.	1.2	50
107	Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biology, 2015, 17, 201-208.	1.8	65
108	Pollination mitigates cucumber yield gaps more than pesticide and fertilizer use in tropical smallholder gardens. Journal of Applied Ecology, 2015, 52, 261-269.	1.9	38

#	Article	IF	CITATIONS
109	Ramsey Discounting of Ecosystem Services. Environmental and Resource Economics, 2015, 61, 273-296.	1.5	37
110	A Unique Nest-Protection Strategy in a New Species of Spider Wasp. PLoS ONE, 2014, 9, e101592.	1.1	15
111	High trees increase sunflower seed predation by birds in an agricultural landscape of Israel. Frontiers in Ecology and Evolution, 2014, 2, .	1.1	11
112	Spillover of trap-nesting bees and wasps in an urban–rural interface. Journal of Insect Conservation, 2014, 18, 815-826.	0.8	39
113	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	2.2	232
114	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	3.3	243
115	Pollination of two oilâ€producing plant species: Camelina (<i>Camelina sativa</i> L. Crantz) and pennycress (<i>Thlaspi arvense</i> L.) doubleâ€cropping in Germany. GCB Bioenergy, 2014, 6, 242-251.	2.5	45
116	Cross-pollination benefits differ among oilseed rape varieties. Journal of Agricultural Science, 2014, 152, 770-778.	0.6	57
117	Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. Journal of Plant Ecology, 2014, 7, 490-498.	1.2	6
118	Do wild bees complement honeybee pollination of confection sunflowers in Israel?. Apidologie, 2014, 45, 235-247.	0.9	36
119	Bat pest control contributes to food security in Thailand. Biological Conservation, 2014, 171, 220-223.	1.9	102
120	Pollination and Plant Resources Change the Nutritional Quality of Almonds for Human Health. PLoS ONE, 2014, 9, e90082.	1,1	50
121	Global malnutrition overlaps with pollinator-dependent micronutrient production. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141799.	1.2	124
122	Ant community structure during forest succession in a subtropical forest in South-East China. Acta Oecologica, 2014, 61, 32-40.	0.5	18
123	From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.	1.9	363
124	Tree diversity promotes predator but not omnivore ants in a subtropical <scp>C</scp> hinese forest. Ecological Entomology, 2014, 39, 637-647.	1.1	34
125	Plant diversity effects on pollinating and herbivorous insects can be linked to plant stoichiometry. Basic and Applied Ecology, 2014, 15, 169-178.	1.2	24
126	Ecosystem services as a boundary object for sustainability. Ecological Economics, 2014, 103, 29-37.	2.9	312

#	Article	IF	Citations
127	Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic and Applied Ecology, 2013, 14, 461-471.	1.2	90
128	A comparison of the strength of biodiversity effects across multiple functions. Oecologia, 2013, 173, 223-237.	0.9	91
129	Competition between honey bees and wild bees and the role of nesting resources in a nature reserve. Journal of Insect Conservation, 2013, 17, 1275-1283.	0.8	52
130	Ant seed predation, pesticide applications and farmers' income from tropical multiâ€cropping gardens. Agricultural and Forest Entomology, 2013, 15, 245-254.	0.7	9
131	Traits of butterfly communities change from specialist to generalist characteristics with increasing land-use intensity. Basic and Applied Ecology, 2013, 14, 547-554.	1.2	114
132	Biodiversity buffers pollination from changes in environmental conditions. Global Change Biology, 2013, 19, 540-547.	4.2	176
133	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
134	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
135	Biodiversity-Friendly Farming. , 2013, , 418-429.		5
136	Post-dispersal seed predation of three grassland species in a plant diversity experiment. Journal of Plant Ecology, 2013, 6, 468-479.	1.2	19
137	Synergistic effects of non- <i>Apis</i> bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122767.	1.2	290
138	Wild pollination services to California almond rely on semiâ€natural habitat. Journal of Applied Ecology, 2012, 49, 723-732.	1.9	140
139	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	4.7	1,443
140	Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nature Communications, 2012, 3, 1076.	5.8	92
141	Herbivore and pollinator responses to grassland management intensity along experimental changes in plant species richness. Biological Conservation, 2012, 150, 42-52.	1.9	72
142	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	1.8	290
143	Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia, 2012, 169, 453-465.	0.9	77
144	Spillover of functionally important organisms between managed and natural habitats. Agriculture, Ecosystems and Environment, 2012, 146, 34-43.	2.5	413

#	Article	IF	CITATIONS
145	Ecosystem Services in Agricultural Landscapes. , 2012, , 17-51.		10
146	Global growth and stability of agricultural yield decrease with pollinator dependence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5909-5914.	3.3	310
147	Conservation: Limits of Land Sparing. Science, 2011, 334, 593-593.	6.0	105
148	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
149	Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic and Applied Ecology, 2011, 12, 282-291.	1.2	392
150	Plantâ€"flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic and Applied Ecology, 2011, 12, 300-309.	1.2	65
151	Early succession arthropod community changes on experimental passion fruit plant patches along a land-use gradient in Ecuador. Agriculture, Ecosystems and Environment, 2011, 140, 14-19.	2.5	12
152	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
153	Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply. PLoS ONE, 2011, 6, e21363.	1.1	251
154	Natural enemy diversity reduces temporal variability in wasp but not bee parasitism. Oecologia, 2010, 162, 755-762.	0.9	26
155	Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 2010, 468, 553-556.	13.7	786
156	Seasonal Contrasts in the Response of Coffee Ants to Agroforestry Shade-Tree Management. Environmental Entomology, 2010, 39, 1744-1750.	0.7	18
157	Economic trade-offs between carbon sequestration, timber production, and crop pollination in tropical forested landscapes. Ecological Complexity, 2010, 7, 314-319.	1.4	29
158	Biodiversity patterns and trophic interactions in human-dominated tropical landscapes in Sulawesi (Indonesia): plants, arthropods and vertebrates. Environmental Science and Engineering, 2010, , 15-71.	0.1	10
159	Pollinator shortage and global crop yield. Communicative and Integrative Biology, 2009, 2, 37-39.	0.6	66
160	Landscape context and management effects on an important insect pest and its natural enemies in almond. Biological Control, 2009, 51, 388-394.	1.4	58
161	From the laboratory to the field: contrasting effects of multiâ€trophic interactions and agroforestry management on coffee pest densities. Entomologia Experimentalis Et Applicata, 2009, 131, 121-129.	0.7	7
162	Temporally mediated responses of the diversity of coffee mites to agroforestry management. Journal of Applied Entomology, 2009, 133, 659-665.	0.8	11

#	Article	IF	CITATIONS
163	Agroforestry management affects coffee pests contingent on season and developmental stage. Agricultural and Forest Entomology, 2009, 11, 295-300.	0.7	25
164	How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 2009, 103, 1579-1588.	1.4	499
165	Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. Forest Ecology and Management, 2009, 258, 1838-1845.	1.4	85
166	Biodiversity and the stability of ecosystem functioning. , 2009, , 78-93.		67
167	Understanding the role of species richness for crop pollination services. , 2009, , 195-208.		30
168	The contribution of non-managed social bees to coffee production: new economic insights based on farm-scale yield data. Agroforestry Systems, 2008, 73, 109-114.	0.9	48
169	Environmentally mediated coffee pest densities in relation to agroforestry management, using hierarchical partitioning analyses. Agriculture, Ecosystems and Environment, 2008, 125, 120-126.	2.5	52
170	How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos, 2008, 117, 1808-1815.	1.2	335
171	Inadequate Assessment of the Ecosystem Service Rationale for Conservation: Reply to Ghazoul. Conservation Biology, 2008, 22, 795-798.	2.4	20
172	Geographical range size of tropical plants influences their response to anthropogenic activities. Diversity and Distributions, 2008, 14, 59-68.	1.9	18
173	Landscape effects on crop pollination services: are there general patterns?. Ecology Letters, 2008, 11, 499-515.	3.0	983
174	Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Current Biology, 2008, 18, 1572-1575.	1.8	490
175	ADVANCES IN POLLINATION ECOLOGY FROM TROPICAL PLANTATION CROPS. Ecology, 2008, 89, 935-943.	1.5	152
176	Resource Heterogeneity Moderates the Biodiversity-Function Relationship in Real World Ecosystems. PLoS Biology, 2008, 6, e122.	2.6	210
177	The Ecosystem Service Controversy: Is There Sufficient Evidence for a "Pollination Paradox�. Gaia, 2008, 17, 12-16.	0.3	12
178	CAVEATS TO QUANTIFYING ECOSYSTEM SERVICES: FRUIT ABORTION BLURS BENEFITS FROM CROP POLLINATION. Ecological Applications, 2007, 17, 1841-1849.	1.8	126
179	Tree recovery and seed dispersal by birds: Comparing forest, agroforestry and abandoned agroforestry in coastal Ecuador. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 8, 131-140.	1.1	39
180	LINKING DEFORESTATION SCENARIOS TO POLLINATION SERVICES AND ECONOMIC RETURNS IN COFFEE AGROFORESTRY SYSTEMS. , 2007, 17, 407-417.		153

#	Article	IF	Citations
181	Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 303-313.	1.2	4,383
182	Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.	3.0	1,096
183	Abandonement of coffee agroforests increases insect abundance and diversity. Agroforestry Systems, 2007, 69, 175-182.	0.9	22
184	Economic evaluation of ecosystem services as a basis for stabilizing rainforest margins? The example of pollination services and pest management in coffee landscapes., 2007,, 263-276.		3
185	DIVERSITY, ECOSYSTEM FUNCTION, AND STABILITY OF PARASITOID–HOST INTERACTIONS ACROSS A TROPICAL HABITAT GRADIENT. Ecology, 2006, 87, 3047-3057.	1.5	139
186	Economic Evaluation of Pollination Services Comparing Coffee Landscapes in Ecuador and Indonesia. Ecology and Society, 2006, 11, .	1.0	94
187	Contrasting responses of bee communities to coffee flowering at different spatial scales. Oikos, 2006, 112, 594-601.	1.2	88
188	Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. Journal of Animal Ecology, 2006, 75, 315-323.	1.3	131
189	Spatial scale of observation affects alpha, beta and gamma diversity of cavity-nesting bees and wasps across a tropical land-use gradient. Journal of Biogeography, 2006, 33, 1295-1304.	1.4	90
190	Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 2005, 8, 857-874.	3.0	3,245
191	SPATIOTEMPORAL VARIATION IN THE DIVERSITY OF HYMENOPTERA ACROSS A TROPICAL HABITAT GRADIENT. Ecology, 2005, 86, 3296-3302.	1.5	230
192	Foraging trip duration and density of megachilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems. Journal of Animal Ecology, 2004, 73, 517-525.	1.3	78
193	Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity and Conservation, 2004, 13, 1427-1439.	1.2	189
194	Pollination of Coffea canephora in relation to local and regional agroforestry management. Journal of Applied Ecology, 2003, 40, 837-845.	1.9	317
195	Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 955-961.	1.2	618
196	Bee pollination and fruit set of <i>Coffea arabica</i> and <i>C. canephora</i> (Rubiaceae). American Journal of Botany, 2003, 90, 153-157.	0.8	141
197	Effects of Land-Use Intensity in Tropical Agroforestry Systems on Coffee Flower-Visiting and Trap-Nesting Bees and Wasps. Conservation Biology, 2002, 16, 1003-1014.	2.4	268
198	Predator–prey ratios on cocoa along a land-use gradient in Indonesia. Biodiversity and Conservation, 2002, 11, 683-693.	1.2	90

#	Article	IF	CITATIONS
199	Tree diversity and nectar composition affect arthropod visitors on extrafloral nectaries in a diversity experiment. Journal of Plant Ecology, 0, , rtw017.	1.2	6
200	Monitoring bee health in European agro-ecosystems using wing morphology and fat bodies. One Ecosystem, 0, 6, .	0.0	10
201	Logging effects on parasitic infections in a swamp rat (<i>Malacomys edwardsi</i>) in West Africa. Journal of Mammalogy, 0, , .	0.6	0