Zhiliang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
2	Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. Advanced Functional Materials, 2022, 32, 2109503.	7.8	74
3	Photocatalytic and Photoelectrochemical Carbon Dioxide Reductions toward Value-Added Multicarbon Products. ACS ES&T Engineering, 2022, 2, 975-988.	3.7	22
4	Simultaneous removal of micropollutants, antibiotic resistant bacteria, and antibiotic resistance genes using graphitic carbon nitride under simulated solar irradiation. Chemical Engineering Journal, 2022, 433, 133839.	6.6	25
5	Machine Learning Guided Dopant Selection for Metal Oxideâ€Based Photoelectrochemical Water Splitting: The Case Study of Fe ₂ O ₃ and CuO. Advanced Materials, 2022, 34, e2106776.	11.1	26
6	Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. Chinese Journal of Catalysis, 2022, 43, 1204-1215.	6.9	17
7	Coordination Chemistry Engineered Polymeric Carbon Nitride Photoanode with Ultralow Onset Potential for Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
8	Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS ₂ @GO-Based Heterogeneous Photo-Fenton Process. Environmental Science & Technology, 2022, 56, 15156-15166.	4.6	31
9	Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat, 2021, 3, e12075.	6.8	65
10	Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 2021, 5, 100079.	6.7	48
11	Efficiency Accreditation and Testing Protocols for Particulate Photocatalysts toward Solar Fuel Production. Joule, 2021, 5, 344-359.	11.7	165
12	Metal–Organic Frameworkâ€Based Materials for Solar Water Splitting. Small Science, 2021, 1, 2000074.	5.8	39
13	Carbon Nitride Functionalized with Sb Resulting in High Photocatalytic Activity. ACS Applied Energy Materials, 2021, 4, 5677-5686.	2.5	8
14	Nanoconfined Topochemical Conversion from MXene to Ultrathin Non‣ayered TiN Nanomesh toward Superior Electrocatalysts for Lithium‣ulfur Batteries. Small, 2021, 17, e2101360.	5.2	25
15	Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 2021, 61, 517-530.	7.1	47
16	Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production. Journal of Materials Science and Technology, 2021, 87, 207-215.	5.6	18
17	Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Frontiers in Energy, 2021, 15, 596-599.	1.2	18
18	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 2021, 374, 621-625.	6.0	137

#	Article	IF	CITATIONS
19	Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing. Nano Energy, 2020, 68, 104226.	8.2	48
20	Efficient hydrogen peroxide synthesis by metal-free polyterthiophene <i>via</i> photoelectrocatalytic dioxygen reduction. Energy and Environmental Science, 2020, 13, 238-245.	15.6	146
21	Recent Advances of Metalâ€Oxide Photoanodes: Engineering of Charge Separation and Transportation toward Efficient Solar Water Splitting. Solar Rrl, 2020, 4, 1900509.	3.1	45
22	Fabricating highly efficient heterostructured CuBi ₂ O ₄ photocathodes for unbiased water splitting. Journal of Materials Chemistry A, 2020, 8, 2498-2504.	5.2	57
23	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	8.2	62
24	Two-dimensional heterojunction SnS2/SnO2 photoanode with excellent photoresponse up to near infrared region. Solar Energy Materials and Solar Cells, 2020, 207, 110342.	3.0	13
25	Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy, 2020, 69, 104392.	8.2	47
26	Hybridization of ZSMâ€5 with Spinel Oxides for Biomass Vapour Upgrading. ChemCatChem, 2020, 12, 1403-1412.	1.8	11
27	Reddish GaN:ZnO photoelectrode for improved photoelectrochemical solar water splitting. Journal of Chemical Physics, 2020, 153, 024706.	1.2	5
28	Molten Salt Synthesis of Atomic Heterogeneous Catalysts: Old Chemistry for Advanced Materials. European Journal of Inorganic Chemistry, 2020, 2020, 2942-2949.	1.0	26
29	Lithiationâ€Induced Vacancy Engineering of Co ₃ O ₄ with Improved Faradic Reactivity for Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30, 2004172.	7.8	156
30	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie - International Edition, 2020, 59, 19434-19449.	7.2	73
31	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie, 2020, 132, 19602-19617.	1.6	14
32	Designing efficient Bi ₂ Fe ₄ O ₉ photoanodes <i>via</i> bulk and surface defect engineering. Chemical Communications, 2020, 56, 9376-9379.	2.2	14
33	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Co atalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 7230-7234.	7.2	221
34	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Coâ€catalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 7297-7301.	1.6	55
35	Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nature Communications, 2020, 11, 2129.	5.8	108
36	Hollow Structure for Photocatalytic CO ₂ Reduction. ChemNanoMat, 2020, 6, 881-888.	1.5	39

#	Article	IF	CITATIONS
37	Chapter 7. Bridging Homogeneous and Heterogeneous Systems—Photoelectrodes for CO2 Electrochemical Conversion. RSC Energy and Environment Series, 2020, , 287-316.	0.2	1
38	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
39	Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 17604-17609.	7.2	82
40	ldentifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting. Angewandte Chemie, 2019, 131, 17768-17773.	1.6	42
41	Enhancing photocatalytic activity of tantalum nitride by rational suppression of bulk, interface and surface charge recombination. Applied Catalysis B: Environmental, 2019, 246, 195-201.	10.8	50
42	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie - International Edition, 2019, 58, 1030-1034.	7.2	268
43	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie, 2019, 131, 1042-1046.	1.6	89
44	Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019, 7, 1801001.	1.8	138
45	2D Porous TiO ₂ Singleâ€Crystalline Nanostructure Demonstrating High Photoâ€Electrochemical Water Splitting Performance. Advanced Materials, 2018, 30, e1705666.	11.1	176
46	Photoelectrode for water splitting: Materials, fabrication and characterization. Science China Materials, 2018, 61, 806-821.	3.5	44
47	Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting. Journal of the American Chemical Society, 2018, 140, 3250-3256.	6.6	224
48	Progress in designing effective photoelectrodes for solar water splitting. Chinese Journal of Catalysis, 2018, 39, 369-378.	6.9	49
49	Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2018, 224, 579-585.	10.8	33
50	Fabrication of a Robust Tantalum Nitride Photoanode from a Flameâ€Heatingâ€Derived Compact Oxide Film. ChemPhotoChem, 2018, 2, 249-256.	1.5	5
51	An Unusual Red Carbon Nitride to Boost the Photoelectrochemical Performance of Wide Bandgap Photoanodes. Advanced Functional Materials, 2018, 28, 1805698.	7.8	94
52	Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes. Physical Chemistry Chemical Physics, 2018, 20, 22629-22635.	1.3	15
53	Amorphous Cobalt Oxide Nanoparticles as Active Waterâ€Oxidation Catalysts. ChemCatChem, 2017, 9, 3641-3645.	1.8	34
54	Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi 2 WO 6. Chinese Journal of Catalysis, 2017, 38, 440-446.	6.9	48

#	Article	IF	CITATIONS
55	Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis, 2017, 7, 675-688.	5.5	488
56	To boost photocatalytic activity in selective oxidation of alcohols on ultrathin Bi2MoO6 nanoplates with Pt nanoparticles as cocatalyst. Journal of Catalysis, 2017, 345, 96-103.	3.1	116
57	Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy and Environmental Science, 2017, 10, 765-771.	15.6	68
58	Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. ACS Applied Materials & amp; Interfaces, 2017, 9, 30696-30702.	4.0	34
59	Decorating mesoporous silicon with amorphous metal–phosphorous-derived nanocatalysts towards enhanced photoelectrochemical water reduction. Journal of Materials Chemistry A, 2016, 4, 14960-14967.	5.2	16
60	Bridging surface states and current–potential response over hematite-based photoelectrochemical water oxidation. RSC Advances, 2016, 6, 85582-85586.	1.7	39
61	Moistureâ€Assisted Preparation of Compact GaN:ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2016, 6, 1600864.	10.2	54
62	Enhancing charge separation on high symmetry SrTiO ₃ exposed with anisotropic facets for photocatalytic water splitting. Energy and Environmental Science, 2016, 9, 2463-2469.	15.6	372
63	Efficient and stable polymer solar cells with electrochemical deposition of CuSCN as an anode interlayer. RSC Advances, 2016, 6, 56845-56850.	1.7	8
64	Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO ₂ electrode for photoelectrochemical water splitting. Chemical Science, 2016, 7, 6076-6082.	3.7	138
65	Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy and Environmental Science, 2016, 9, 1327-1334.	15.6	332
66	Insight into the charge transfer in particulate Ta ₃ N ₅ photoanode with high photoelectrochemical performance. Chemical Science, 2016, 7, 4391-4399.	3.7	64
67	Substrate–Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 7086-7091.	4.0	30
68	Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungstenâ€doped Bismuth Vanadate Photoanodes. ChemSusChem, 2015, 8, 4049-4055.	3.6	41
69	Abnormal Effects of Cations (Li ⁺ , Na ⁺ , and K ⁺) on Photoelectrochemical and Electrocatalytic Water Splitting. Journal of Physical Chemistry B, 2015, 119, 3560-3566.	1.2	31
70	Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chemical Communications, 2015, 51, 16952-16955.	2.2	33
71	Synergetic Effect of Conjugated Ni(OH) ₂ /IrO ₂ Cocatalyst on Titanium-Doped Hematite Photoanode for Solar Water Splitting. Journal of Physical Chemistry C, 2015, 119, 19607-19612.	1.5	167
72	Transition metal (Ni, Fe, and Cu) hydroxides enhanced α-Fe ₂ O ₃ photoanode-based photofuel cell. RSC Advances, 2014, 4, 47383-47388.	1.7	19

#	Article	IF	CITATIONS
73	Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode. Physical Chemistry Chemical Physics, 2014, 16, 15608-15614.	1.3	94
74	A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 23544-23548.	1.3	41
75	A Tantalum Nitride Photoanode Modified with a Holeâ€Storage Layer for Highly Stable Solar Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7295-7299.	7.2	354
76	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	5.8	12
77	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	7