List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8205043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Construction of Synergistic Co and Cu Diatomic Sites for Enhanced Higher Alcohol Synthesis. CCS Chemistry, 2023, 5, 851-864.	7.8	4
2	Ionic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Science China Materials, 2022, 65, 163-169.	6.3	13
3	Highly Effective Rh/NaNbO3 Catalyst for the Selective Hydrogenation of Benzoic Acid to Cyclohexane Carboxylic Acid Under Mild Conditions. Catalysis Letters, 2022, 152, 2164-2177.	2.6	5
4	Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15, 3017-3025.	10.4	29
5	Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites. Nature Communications, 2022, 13, 723.	12.8	91
6	Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9, .	9.5	22
7	Highâ€Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry - A European Journal, 2022, , .	3.3	2
8	Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano Research, 2022, 15, 5024-5031.	10.4	41
9	Frontispiece: Highâ€Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry - A European Journal, 2022, 28, .	3.3	0
10	NO ₂ sensing with CdS nanowires at room temperature under green light illumination. Materials Futures, 2022, 1, 025303.	8.4	3
11	Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
12	Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Advanced Materials Interfaces, 2021, 8, 2001636.	3.7	17
13	Direct synthesis of 1T-phase MoS ₂ nanosheets with abundant sulfur-vacancies through (CH ₃) ₄ N ⁺ cation-intercalation for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13996-14003.	10.3	17
14	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and High‣oadings. Angewandte Chemie - International Edition, 2021, 60, 15248-15253.	13.8	38
15	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and Highâ€Loadings. Angewandte Chemie, 2021, 133, 15376-15381.	2.0	24
16	Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sensors and Actuators B: Chemical, 2021, 339, 129886.	7.8	51
17	Graphdiyne: a Highly Sensitive Material for ppb-Level NO2 Gas Sensing at Room Temperature. Chemical Research in Chinese Universities, 2021, 37, 1317-1322.	2.6	10
18	Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions. Angewandte Chemie - International Edition, 2020, 59, 1216-1219.	13.8	98

#	Article	IF	CITATIONS
19	Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions. Angewandte Chemie, 2020, 132, 1232-1235.	2.0	25
20	Bioinspired Hollow Nanoreactor: Catalysts that Carry Gaseous Hydrogen for Enhanced Gasâ€Liquidâ€Solid Threeâ€Phase Hydrogenation Reactions. ChemCatChem, 2020, 12, 459-462.	3.7	11
21	Enabling an atom-economic production of chiral amino alcohols by electrodialysis with bipolar membranes. Green Chemistry, 2020, 22, 2213-2224.	9.0	9
22	Facile Synthesis of Pd Nanoparticles Incorporated into Ultrathin Crystalline g-C ₃ N ₄ with Enhanced Photocatalytic Performance. Crystal Growth and Design, 2020, 20, 7526-7532.	3.0	11
23	Single-Atom Catalysts for Thermal Heterogeneous Catalysis in Liquid: Recent Progress and Future Perspective. , 2020, 2, 1653-1661.		13
24	Integration of Metal Single Atoms on Hierarchical Porous Nitrogen-Doped Carbon for Highly Efficient Hydrogenation of Large-Sized Molecules in the Pharmaceutical Industry. ACS Applied Materials & Interfaces, 2020, 12, 17651-17658.	8.0	27
25	A Co ₃ O ₄ @meso‣iO ₂ Hollow Nanoreactor Prepared from ZIFâ€67 a an Efficient Catalyst for Olefin Epoxidation by Oxygen. ChemNanoMat, 2020, 6, 751-754.	^{IS} 2.8	9
26	Simultaneous High Conversion and Selectivity in Olefin Oxidation with Oxygen Through Solid/Liquid/Gas Threeâ€₽hase Interface Design. ChemCatChem, 2019, 11, 4524-4528.	3.7	4
27	N-Doped carbon nanofibers derived from bacterial cellulose as an excellent metal-free catalyst for selective oxidation of arylalkanes. Chemical Communications, 2019, 55, 1935-1938.	4.1	34
28	Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Science China Materials, 2019, 62, 1306-1314.	6.3	44
29	Preparation of Ga ₂ O ₃ Doped Sulfonated Tin Oxides as a Highly Active and Recyclable Heterogeneous Solid Acid Catalyst for Aldol Reactions. Journal of Nanoscience and Nanotechnology, 2019, 19, 3658-3662.	0.9	1
30	A new approach to maintaining the structural integrity of fragile nanostructured heterogeneous catalysts with nanoscale magnetic stir bars. Science Bulletin, 2019, 64, 229-231.	9.0	1
31	Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 459-464.	20.2	99
32	Nitrogen, Sulfur Coâ€doped Carbon Materials Derived from the Leaf, Stem and Root of Amaranth as Metalâ€free Catalysts for Selective Oxidation of Aromatic Hydrocarbons. ChemCatChem, 2019, 11, 1010-1016.	3.7	5
33	Controllable synthesis of carbon encapsulated iron phosphide nanoparticles for the chemoselective hydrogenation of aromatic nitroarenes to anilines. Inorganic Chemistry Frontiers, 2018, 5, 1094-1099.	6.0	29
34	Chiral Metal–Organic Framework Hollow Nanospheres for Highâ€Efficiency Enantiomer Separation. Chemistry - an Asian Journal, 2018, 13, 1535-1538.	3.3	27
35	Enhancing reaction rate in a Pickering emulsion system with natural magnetotactic bacteria as nanoscale magnetic stirring bars. Chemical Science, 2018, 9, 2575-2580.	7.4	34
36	Extremely low loading of Ru species on hydroxyapatite as an effective heterogeneous catalyst for olefin epoxidation. Chemical Communications, 2018, 54, 1433-1436.	4.1	19

#	Article	IF	CITATIONS
37	Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy, 2018, 143, 43-55.	8.8	98
38	Cobalt immobilized on hydroxyapatite as a low-cost and highly effective heterogeneous catalyst for alkenes epoxidation under mild conditions. RSC Advances, 2018, 8, 37303-37306.	3.6	6
39	Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method. Energy, 2018, 165, 537-548.	8.8	19
40	Superaerophilic Materials Are Surprising Catalysts: Wettabilityâ€Induced Excellent Hydrogenation Activity under Ambient H ₂ Pressure. Advanced Materials Interfaces, 2018, 5, 1801259.	3.7	15
41	Controllable Synthesis of Multiheteroatoms Co-Doped Hierarchical Porous Carbon Spheres as an Ideal Catalysis Platform. ACS Applied Materials & Interfaces, 2018, 10, 19664-19672.	8.0	25
42	Excellent Selectivity with High Conversion in the Semihydrogenation of Alkynes using Palladiumâ€Based Bimetallic Catalysts. ChemCatChem, 2017, 9, 4053-4057.	3.7	14
43	Carbonaceous aerogel and CoNiAl-LDH@CA nanocomposites derived from biomass for high performance pseudo-supercapacitor. Science Bulletin, 2017, 62, 841-845.	9.0	32
44	Size-selective adsorption of anionic dyes induced by the layer space in layered double hydroxide hollow microspheres. Materials Chemistry Frontiers, 2017, 1, 1550-1555.	5.9	41
45	A general route to coat poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) on various substrates and the derived N, P, S-doped hollow carbon shells for catalysis. Nanoscale, 2017, 9, 13538-13545.	5.6	33
46	Nitrogen-doped hollow carbon spheres derived from amination reaction of fullerene with alkyl diamines as a carbon catalyst for hydrogenation of aromatic nitro compounds. Carbon, 2017, 125, 139-145.	10.3	30
47	Synthesis of ZSM-5 monoliths with hierarchical porosity through a steam-assisted crystallization method using sponges as scaffolds. Chinese Journal of Catalysis, 2017, 38, 872-877.	14.0	11
48	In situ facile loading of noble metal nanoparticles on polydopamine nanospheres via galvanic replacement reaction for multifunctional catalysis. Science China Chemistry, 2017, 60, 1236-1242.	8.2	27
49	One methyl group makes a major difference: shape-selective catalysis by zeolite nanoreactors in liquid-phase condensation reactions. Journal of Materials Chemistry A, 2017, 5, 17464-17469.	10.3	10
50	Direct synthesis of ordered mesoporous ZSM-5 zeolites from in situ crystallization of carbonaceous SBA-15. Science China Chemistry, 2017, 60, 1588-1595.	8.2	7
51	Having it both ways: delicate hierarchical structure and robust mechanical stability on micro/nanomaterials with mesoporous silica coating. Journal of Porous Materials, 2017, 24, 103-108.	2.6	8
52	Nitrogen, Phosphorus, and Sulfur Coâ€Đoped Hollow Carbon Shell as Superior Metalâ€Free Catalyst for Selective Oxidation of Aromatic Alkanes. Angewandte Chemie - International Edition, 2016, 55, 4016-4020.	13.8	250
53	Nitrogen, Phosphorus, and Sulfur Coâ€Doped Hollow Carbon Shell as Superior Metalâ€Free Catalyst for Selective Oxidation of Aromatic Alkanes. Angewandte Chemie, 2016, 128, 4084-4088.	2.0	64
54	Nanocarbon-based TEMPO as stable heterogeneous catalysts for partial oxidation of alcohols. Science Bulletin, 2016, 61, 772-777.	9.0	11

#	Article	IF	CITATIONS
55	Sharp size-selective catalysis in a liquid solution over Pd nanoparticles encapsulated in hollow silicalite-1 zeolite crystals. RSC Advances, 2016, 6, 89499-89502.	3.6	12
56	Surfactantâ€Free Palladium Nanoparticles Encapsulated in ZIFâ€8 Hollow Nanospheres for Size‧elective Catalysis in Liquidâ€Phase Solution. ChemCatChem, 2016, 8, 3224-3228.	3.7	43
57	Application of flowerlike MgO for highly sensitive determination of lead via matrixâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 208-216.	1.5	5
58	Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 18470-18477.	10.3	93
59	Preparation of Magnetic Tubular Nanoreactors for Highly Efficient Catalysis. Chemistry - an Asian Journal, 2016, 11, 2797-2801.	3.3	8
60	Palladium Nanoparticles Encapsulated in a Silicaliteâ€1 Zeolite Shell for Sizeâ€Selective Catalysis in Liquidâ€Phase Solution. ChemCatChem, 2016, 8, 1279-1282.	3.7	41
61	A Pd/silica composite with highly uniform Pd nanoparticles on silica lamella via layered silicate. Chemical Physics Letters, 2016, 658, 88-91.	2.6	6
62	Hierarchical flowerlike magnesium oxide hollow spheres with extremely high surface area for adsorption and catalysis. Journal of Materials Chemistry A, 2016, 4, 400-406.	10.3	89
63	A Pd–Cu ₂ O nanocomposite as an effective synergistic catalyst for selective semi-hydrogenation of the terminal alkynes only. Chemical Communications, 2016, 52, 3627-3630.	4.1	37
64	Spindle-shaped nanoscale yolk/shell magnetic stirring bars for heterogeneous catalysis in macro- and microscopic systems. Chemical Communications, 2016, 52, 1575-1578.	4.1	29
65	Highly Active and Stable Palladium Nanoparticles Encapsulated in a Mesoporous Silica Yolk–Shell Nanoreactor for Suzuki–Miyaura Reactions. ChemCatChem, 2015, 7, 2475-2479.	3.7	34
66	MgAl layered double hydroxides with chloride and carbonate ions as interlayer anions for removal of arsenic and fluoride ions in water. RSC Advances, 2015, 5, 10412-10417.	3.6	97
67	Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks. Nano Research, 2015, 8, 1339-1347.	10.4	30
68	Nanoscale Magnetic Stirring Bars for Heterogeneous Catalysis in Microscopic Systems. Angewandte Chemie, 2015, 127, 2699-2702.	2.0	26
69	A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres. RSC Advances, 2015, 5, 13256-13260.	3.6	36
70	Nanoscale Magnetic Stirring Bars for Heterogeneous Catalysis in Microscopic Systems. Angewandte Chemie - International Edition, 2015, 54, 2661-2664.	13.8	104
71	Ordered mesoporous silcalite-1 zeolite assembled from colloidal nanocrystalline precursors. Chinese Journal of Catalysis, 2015, 36, 838-844.	14.0	4
72	One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties. Journal of Materials Chemistry A, 2015, 3, 10858-10863.	10.3	64

CHANGYAN CAO

#	Article	IF	CITATIONS
73	Sandwich-like porous TiO ₂ /reduced graphene oxide (rGO) for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8701-8705.	10.3	38
74	Amines functionalized C60 as solid base catalysts for Knoevenagel condensation with high activity and stability. RSC Advances, 2015, 5, 86082-86087.	3.6	35
75	A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. Journal of Materials Chemistry A, 2014, 2, 1677-1681.	10.3	363
76	Controllable Loading of Noble Metal Nanoparticles on Multiwalled Carbon Nanotubes/Fe ₃ O ₄ through an Inâ€Situ Galvanic Replacement Reaction for Highâ€Performance Catalysis. ChemCatChem, 2014, 6, 1868-1872.	3.7	18
77	Origin of the Low Olefin Production over HZSM-22 and HZSM-23 Zeolites: External Acid Sites and Pore Mouth Catalysis. ACS Catalysis, 2014, 4, 529-534.	11.2	63
78	Fabrication of porous Co ₃ O ₄ nanowires with high CO sensing performance at a low operating temperature. Chemical Communications, 2014, 50, 14889-14891.	4.1	37
79	Monodispersed Pd clusters generated in situ by their own reductive support for high activity and stability in cross-coupling reactions. Journal of Materials Chemistry A, 2014, 2, 12739.	10.3	52
80	One-pot synthesis of porous magnetic cellulose beads for the removal of metal ions. RSC Advances, 2014, 4, 31362.	3.6	32
81	Flexible macroporous carbon nanofiber film with high oil adsorption capacity. Journal of Materials Chemistry A, 2014, 2, 3557.	10.3	117
82	C ₆₀ fullerenol as an active and stable catalyst for the synthesis of cyclic carbonates from CO ₂ and epoxides. Chemical Communications, 2014, 50, 10307-10310.	4.1	57
83	Sandwichlike Magnesium Silicate/Reduced Graphene Oxide Nanocomposite for Enhanced Pb ²⁺ and Methylene Blue Adsorption. ACS Applied Materials & Interfaces, 2014, 6, 14653-14659.	8.0	205
84	A core–shell–satellite structured Fe ₃ O ₄ @MS–NH ₂ @Pd nanocomposite: a magnetically recyclable multifunctional catalyst for one-pot multistep cascade reaction sequences. Nanoscale, 2014, 6, 442-448.	5.6	47
85	Core–shell structured MgAl-LDO@Al-MS hexagonal nanocomposite: an all inorganic acid–base bifunctional nanoreactor for one-pot cascade reactions. Journal of Materials Chemistry A, 2014, 2, 339-344.	10.3	47
86	Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer. Journal of Materials Chemistry A, 2014, 2, 7706-7710.	10.3	44
87	Core-shell structured nanospheres with mesoporous silica shell and Ni core as a stable catalyst for hydrolytic dehydrogenation of ammonia borane. Journal of Energy Chemistry, 2014, 23, 50-56.	12.9	21
88	Tunable Synthesis of Hexagram-Shaped Hematite Iron Oxide Microcrystals with Shape-Dependent Magnetic Properties. Journal of Nanoscience and Nanotechnology, 2014, 14, 5587-5590.	0.9	6
89	Synthesis of a core–shell–shell structured acid–base bifunctional mesoporous silica nanoreactor (MS-SO3H@MS@MS-NH2) and its application in tandem catalysis. Journal of Materials Chemistry A, 2013, 1, 12804.	10.3	37
90	Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution. Chemical Engineering Journal, 2013, 228, 731-740.	12.7	257

CHANGYAN CAO

#	Article	IF	CITATIONS
91	Programmed Synthesis of Magnetic Magnesium Silicate Nanotubes with High Adsorption Capacities for Lead and Cadmium Ions. Chemistry - A European Journal, 2013, 19, 1558-1562.	3.3	68
92	A yolk–shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chemical Communications, 2013, 49, 2332.	4.1	136
93	Au nanoparticles embedded into the inner wall of TiO2 hollow spheres as a nanoreactor with superb thermal stability. Chemical Communications, 2013, 49, 3116.	4.1	58
94	Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. Journal of Environmental Sciences, 2013, 25, 933-943.	6.1	340
95	One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. Journal of Materials Chemistry A, 2013, 1, 959-965.	10.3	296
96	Synthesis and characterization of multi-amino-functionalized cellulose for arsenic adsorption. Carbohydrate Polymers, 2013, 92, 380-387.	10.2	113
97	Oneâ€Pot Multistep Cascade Reactions over Multifunctional Nanocomposites with Pd Nanoparticles Supported on Amineâ€Modified Mesoporous Silica. Chemistry - an Asian Journal, 2013, 8, 2459-2465.	3.3	33
98	Coating with mesoporous silica remarkably enhances the stability of the highly active yet fragile flower-like MgO catalyst for dimethyl carbonate synthesis. Chemical Communications, 2013, 49, 6093.	4.1	40
99	Fabrication of Macroporous/Mesoporous Carbon Nanofiber Using CaCO ₃ Nanoparticles as Dual Purpose Template and Its Application as Catalyst Support. Journal of Physical Chemistry C, 2013, 117, 21426-21432.	3.1	51
100	αâ€Fe ₂ O ₃ Nanodisks: Layered Structure, Growth Mechanism, and Enhanced Photocatalytic Property. Chemistry - A European Journal, 2013, 19, 11172-11177.	3.3	57
101	Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water. Journal of Materials Chemistry, 2012, 22, 17222.	6.7	125
102	Low-cost synthesis of graphitic carbon nanofibers as excellent room temperature sensors for explosive gases. Journal of Materials Chemistry, 2012, 22, 15342.	6.7	114
103	High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres. Journal of Materials Chemistry, 2012, 22, 19898.	6.7	51
104	Superb Adsorption Capacity and Mechanism of Flowerlike Magnesium Oxide Nanostructures for Lead and Cadmium Ions. ACS Applied Materials & Interfaces, 2012, 4, 4283-4287.	8.0	259
105	Diffusion Induced Reactant Shape Selectivity Inside Mesoporous Pores of Pd@meso-SiO ₂ Nanoreactor in Suzuki Coupling Reactions. Journal of Physical Chemistry C, 2012, 116, 14986-14991.	3.1	78
106	Core–shell structured mesoporous silica as acid–base bifunctional catalyst with designated diffusion path for cascade reaction sequences. Chemical Communications, 2012, 48, 10541.	4.1	76
107	Fe3+ and amino functioned mesoporous silica: Preparation, structural analysis and arsenic adsorption. Journal of Hazardous Materials, 2012, 235-236, 336-342.	12.4	41
108	Synthesis, Self-Assembly, and High Performance in Gas Sensing of X-Shaped Iron Oxide Crystals. ACS Applied Materials & Interfaces, 2012, 4, 5698-5703.	8.0	48

#	Article	IF	CITATIONS
109	Temperature-Responsive Smart Nanoreactors: Poly(<i>N</i> -isopropylacrylamide)-Coated Au@Mesoporous-SiO ₂ Hollow Nanospheres. Langmuir, 2012, 28, 13452-13458.	3.5	84
110	New hierarchical zinc silicate nanostructures and their application in lead ion adsorption. Journal of Materials Chemistry, 2012, 22, 3562.	6.7	87
111	Low-Cost Synthesis of Flowerlike α-Fe ₂ O ₃ Nanostructures for Heavy Metal Ion Removal: Adsorption Property and Mechanism. Langmuir, 2012, 28, 4573-4579.	3.5	409
112	Synthesis of Cyclic Carbonates: Catalysis by an Ironâ€Based Composite and the Role of Hydrogen Bonding at the Solid/Liquid Interface. ChemSusChem, 2012, 5, 652-655.	6.8	51
113	Low-cost synthesis of robust anatase polyhedral structures with a preponderance of exposed {001} facets for enhanced photoactivities. Nano Research, 2012, 5, 434-442.	10.4	46
114	A pH-driven DNA nanoswitch for responsive controlled release. Chemical Communications, 2011, 47, 2850.	4.1	109
115	Mesoporous Ce1â^'xZrxO2 solid solution nanofibers as high efficiency catalysts for the catalytic combustion of VOCs. Journal of Materials Chemistry, 2011, 21, 12836.	6.7	46
116	Fabrication of nanostructured metal nitrides with tailored composition and morphology. Chemical Communications, 2011, 47, 3619.	4.1	50
117	Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 3204.	6.7	311
118	CuO nanoclusters coated with mesoporous SiO2 as highly active and stable catalysts for olefin epoxidation. Journal of Materials Chemistry, 2011, 21, 5774.	6.7	74
119	0.3 Ã Makes the Difference: Dramatic Changes in Methanol-to-Olefin Activities between H-ZSM-12 and H-ZSM-22 Zeolites. Journal of Physical Chemistry C, 2011, 115, 24987-24992.	3.1	90
120	Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. Journal of Hazardous Materials, 2011, 198, 143-150.	12.4	137
121	Synthesis of Biomimetic Poly[2-(methacryloyloxy)ethyl phosphorycholine]-Coated Magnetite Nanoparticles via Surface-Initiated Atom Transfer Radical Polymerization. Journal of Nanoscience and Nanotechnology, 2011, 11, 8469-8473.	0.9	4
122	Nanoporous Nickel Spheres as Highly Active Catalyst for Hydrogen Generation from Ammonia Borane. ChemSusChem, 2010, 3, 1241-1244.	6.8	73
123	Ceria Hollow Nanospheres Produced by a Template-Free Microwave-Assisted Hydrothermal Method for Heavy Metal Ion Removal and Catalysis. Journal of Physical Chemistry C, 2010, 114, 9865-9870.	3.1	280
124	Enhanced catalytic activity of perovskite oxide nanofibers for combustion of methane in coal mine ventilation air. Journal of Materials Chemistry, 2010, 20, 6968.	6.7	41
125	Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angewandte Chemie, 0, , .	2.0	8