
Juan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8204589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation. Bioactive Materials, 2022, 17, 261-275.	15.6	12
2	Photoredox catalyzed C–H trifluoroethylamination of heteroarenes. Chemical Communications, 2022, 58, 1346-1349.	4.1	10
3	General Synthesis of <i>N</i> -Trifluoromethyl Compounds with <i>N</i> -Trifluoromethyl Hydroxylamine Reagents. Journal of the American Chemical Society, 2022, 144, 1962-1970.	13.7	34
4	Synthesis of ArCF ₂ X and [¹⁸ F]Ar-CF ₃ via Cleavage of the Trifluoromethylsulfonyl Group. Organic Letters, 2022, 24, 164-168.	4.6	13
5	Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Materials Science and Engineering C, 2021, 119, 111506.	7.3	25
6	Dynamic action of keratinase on wool fibre tracked by FITC-labelled enzyme. Biocatalysis and Biotransformation, 2021, 39, 214-220.	2.0	4
7	Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomaterialia, 2020, 117, 180-191.	8.3	50
8	Reduced Graphene Oxideâ€Encapsulated Microfiber Patterns Enable Controllable Formation of Neuronalâ€Like Networks. Advanced Materials, 2020, 32, e2004555.	21.0	49
9	Silk fibroin/poly(Lâ€ʻlactic acidâ€ʻcoâ€ʻεâ€ʻcaprolactone) electrospun nanofibrous scaffolds exert a protective effect following myocardial infarction. Experimental and Therapeutic Medicine, 2019, 17, 3989-3998.	1.8	6
10	Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 2444-2456.	5.2	54
11	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	8.3	174
12	Fabrication and characterization of TGF-β1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	5.0	28
13	Dual-layer aligned-random nanofibrous scaffolds for improving gradient microstructure of tendon-to-bone healing in a rabbit extra-articular model. International Journal of Nanomedicine, 2018, Volume 13, 3481-3492.	6.7	57
14	Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering. Frontiers of Materials Science, 2017, 11, 22-32.	2.2	17
15	Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 151, 314-323.	5.0	35
16	Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. Journal of Biomaterials Applications, 2017, 32, 331-341.	2.4	29
17	Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release. International Journal of Molecular Sciences, 2016, 17, 2012.	4.1	17
18	A facile approach for the fabrication of nano-attapulgite/poly(vinyl pyrrolidone)/biopolymers core–sheath ultrafine fibrous mats for drug controlled release. RSC Advances, 2016, 6, 49817-49823.	3.6	12

Juan Wang

#	Article	IF	CITATIONS
19	Fabrication of poly(ester-urethane)urea elastomer/gelatin electrospun nanofibrous membranes for potential applications in skin tissue engineering. RSC Advances, 2016, 6, 73636-73644.	3.6	23
20	Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi. International Journal of Biological Macromolecules, 2015, 79, 316-325.	7.5	33
21	<i>Antheraea pernyi</i> Silk Fibroin Nanoparticles for Drug Delivery. Journal of Nano Research, 0, 27, 75-81.	0.8	12
22	<i>Antheraea pernyi</i> Silk Fibroin Microspheres Carried Lysozyme. Advanced Materials Research, 0, 915-916, 875-878.	0.3	3
23	Improvement in dyeing and physical properties of wool fabrics through pretreatment based on the bacterial culture of <i>Stenotrophomonas maltophilia</i> DHHJ. Textile Reseach Journal, 0, , 004051752211062.	2.2	1