Pu Chun Ke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8202616/publications.pdf

Version: 2024-02-01

36203 39575 10,097 162 51 94 citations h-index g-index papers 165 165 165 12141 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society, 2022, 144, 9184-9205.	6.6	98
2	Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. Environmental Science & Environmental Scie	4.6	16
3	Dynamic intracellular exchange of nanomaterials' protein corona perturbs proteostasis and remodels cell metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
4	The Membrane Axis of Alzheimer's Nanomedicine. Advanced NanoBiomed Research, 2021, 1, 2000040.	1.7	12
5	<i>In vitro</i> and <i>in vivo</i> models for anti-amyloidosis nanomedicines. Nanoscale Horizons, 2021, 6, 95-119.	4.1	13
6	Spontaneous formation of β-sheet nano-barrels during the early aggregation of Alzheimer's amyloid beta. Nano Today, 2021, 38, 101125.	6.2	44
7	Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS Applied Materials & Interfaces, 2021, 13, 29936-29948.	4.0	22
8	Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chemistry of Materials, 2021, 33, 6484-6500.	3.2	25
9	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67
10	Editorial: Application for Nanotechnology for the Treatment of Brain Diseases and Disorders. Frontiers in Bioengineering and Biotechnology, 2021, 9, 743160.	2.0	0
11	A Framework of Paracellular Transport via Nanoparticlesâ€Induced Endothelial Leakiness. Advanced Science, 2021, 8, e2102519.	5.6	22
12	Amyloid Aggregation under the Lens of Liquid–Liquid Phase Separation. Journal of Physical Chemistry Letters, 2021, 12, 368-378.	2.1	34
13	Serum apolipoprotein A-I depletion is causative to silica nanoparticles–induced cardiovascular damage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
14	Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.	6.2	18
15	Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Physical Chemistry Chemical Physics, 2021, 24, 86-97.	1.3	14
16	Dynamic Protein Corona of Gold Nanoparticles with an Evolving Morphology. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58238-58251.	4.0	23
17	Mitigation of Amyloidosis with Nanomaterials. Advanced Materials, 2020, 32, e1901690.	11.1	87
18	Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. Advanced Therapeutics, 2020, 3, 1900102.	1.6	21

#	Article	IF	CITATIONS
19	Human Plasma Protein Corona of $\hat{Al^2}$ Amyloid and Its Impact on Islet Amyloid Polypeptide Cross-Seeding. Biomacromolecules, 2020, 21, 988-998.	2.6	15
20	Amyloid Beta Pathogenesis: Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC (Adv. Sci.) Tj ETC	90 <u>0</u> 0 rgB	ST /8verlock 1
21	Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Advanced Science, 2020, 7, 2001299.	5.6	47
22	Amyloidosis inhibition, a new frontier of the protein corona. Nano Today, 2020, 35, 100937.	6.2	32
23	Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine. ACS Nano, 2020, 14, 14391-14416.	7.3	30
24	Novel Strategies to Protect and Visualize Pancreatic \hat{l}^2 Cells in Diabetes. Trends in Endocrinology and Metabolism, 2020, 31, 905-917.	3.1	13
25	Amyloidosis: Mitigation of Amyloidosis with Nanomaterials (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070146.	11.1	2
26	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	5.6	43
27	Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale, 2020, 12, 12317-12328.	2.8	23
28	Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. Nanoscale, 2020, 12, 14422-14440.	2.8	22
29	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
30	Multimodal Nanoprobe for Pancreatic Beta Cell Detection and Amyloidosis Mitigation. Chemistry of Materials, 2020, 32, 1080-1088.	3. 2	16
31	Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. Small, 2020, 16, e1906674.	5. 2	26
32	Differential Roles of Plasma Protein Corona on Immune Cell Association and Cytokine Secretion of Oligomeric and Fibrillar Beta-Amyloid. Biomacromolecules, 2019, 20, 4208-4217.	2.6	16
33	Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. Nano Letters, 2019, 19, 6535-6546.	4.5	27
34	Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019, 10, 3780.	5.8	132
35	Nanoparticles' interactions with vasculature in diseases. Chemical Society Reviews, 2019, 48, 5381-5407.	18.7	231
36	Graphene quantum dots rescue protein dysregulation of pancreatic \hat{l}^2 -cells exposed to human islet amyloid polypeptide. Nano Research, 2019, 12, 2827-2834.	5.8	34

#	Article	IF	Citations
37	Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10462-10471.	4.0	37
38	Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. Nanoscale, 2019, 11, 11933-11945.	2.8	47
39	Peptide Selfâ€Assembly: Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€5heet Transition, and Formation of βâ€Barrel Intermediates (Small 18/2019). Small, 2019, 15, 1970093.	5. 2	1
40	Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€Sheet Transition, and Formation of βâ€Barrel Intermediates. Small, 2019, 15, e1805166.	5.2	49
41	Physical and toxicological profiles of human IAPP amyloids and plaques. Science Bulletin, 2019, 64, 26-35.	4.3	24
42	Nucleation of \hat{l}^2 -rich oligomers and \hat{l}^2 -barrels in the early aggregation of human islet amyloid polypeptide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 434-444.	1.8	44
43	Synthesis and identification of novel pyridazinylpyrazolone based diazo compounds as inhibitors of human islet amyloid polypeptide aggregation. Bioorganic Chemistry, 2019, 84, 339-346.	2.0	12
44	Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline). Nanoscale, 2018, 10, 10863-10875.	2.8	42
45	Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1803-1809.	1.4	36
46	Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Research, 2018, 11, 3636-3647.	5.8	35
47	Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an <i>in vitro</i> blood brain barrier model. Biomaterials Science, 2018, 6, 314-323.	2.6	36
48	Graphene quantum dots against human IAPP aggregation and toxicity <i>in vivo</i> . Nanoscale, 2018, 10, 19995-20006.	2.8	100
49	Mitigating Human IAPP Amyloidogenesis In Vivo with Chiral Silica Nanoribbons. Small, 2018, 14, e1802825.	5.2	57
50	Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS Nano, 2018, 12, 6066-6078.	7.3	39
51	Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS Sustainable Chemistry and Engineering, 2018, 6, 11704-11715.	3.2	41
52	Nanoparticle–proteome <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 6026-6041.	2.9	18
53	In Vivo Mitigation of Amyloidogenesis through Functional–Pathogenic Double-Protein Coronae. Nano Letters, 2018, 18, 5797-5804.	4.5	39
54	Effect of Bio-molecules on Human Islet Amyloid Polypeptide Aggregation, Fibril Remodeling and Cytoxicity. Biophysical Journal, 2018, 114, 228a.	0.2	0

#	Article	IF	Citations
55	Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomaterials Science, 2017, 5, 485-493.	2.6	53
56	Brushed Polyethylene Glycol and Phosphorylcholine as Promising Grafting Agents against Protein Binding. Biophysical Journal, 2017, 112, 350a.	0.2	0
57	NanoEHS beyond toxicity – focusing on biocorona. Environmental Science: Nano, 2017, 4, 1433-1454.	2.2	43
58	Mesoscopic Properties and Molecular Mechanisms of IAPP Amyloid Inhibition and Remodeling with Small Molecules. Biophysical Journal, 2017, 112, 340a.	0.2	0
59	Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation. Biomacromolecules, 2017, 18, 4249-4260.	2.6	65
60	Zinc-coordination and C-peptide complexation: a potential mechanism for the endogenous inhibition of IAPP aggregation. Chemical Communications, 2017, 53, 9394-9397.	2.2	21
61	Modulating protein amyloid aggregation with nanomaterials. Environmental Science: Nano, 2017, 4, 1772-1783.	2.2	38
62	Plasma Proteome Association and Catalytic Activity of Stealth Polymerâ€Grafted Iron Oxide Nanoparticles. Small, 2017, 13, 1701528.	5.2	27
63	Lysophosphatidylcholine modulates the aggregation of human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2017, 19, 30627-30635.	1.3	12
64	Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis. Biomacromolecules, 2017, 18, 4316-4322.	2.6	50
65	Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	18.7	262
66	Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity. Scientific Reports, 2017, 7, 2455.	1.6	34
67	Poly(2-oxazoline)-based micro- and nanoparticles: A review. European Polymer Journal, 2017, 88, 486-515.	2.6	91
68	A Decade of the Protein Corona. ACS Nano, 2017, 11, 11773-11776.	7.3	477
69	Pancreatic \hat{I}^2 -Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species. Scientific Reports, 2016, 6, 21274.	1.6	44
70	Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition. Scientific Reports, 2016, 6, 19463.	1.6	104
71	Multiscale Modeling of Dendrimers for Biological Applications. Biophysical Journal, 2016, 110, 546a.	0.2	0
72	Brushed polyethylene glycol and phosphorylcholine for grafting nanoparticles against protein binding. Polymer Chemistry, 2016, 7, 6875-6879.	1.9	20

#	Article	IF	Citations
73	Inhibition of hIAPP Amyloid Aggregation and Pancreatic β-Cell Toxicity by OH-Terminated PAMAM Dendrimer. Small, 2016, 12, 1615-1626.	5.2	99
74	Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells. Physical Chemistry Chemical Physics, 2016, 18, 94-100.	1.3	70
75	Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol. Polymer Chemistry, 2016, 7, 1931-1944.	1.9	32
76	Determining the Size Exclusion for Nanoparticles in Citrus Leaves. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 732-737.	0.5	38
77	Striped Nanoparticles: A Thermodynamics Model for the Emergence of a Stripeâ€ike Binary SAM on a Nanoparticle Surface (Small 37/2015). Small, 2015, 11, 4798-4798.	5.2	0
78	A Thermodynamics Model for the Emergence of a Stripeâ€like Binary SAM on a Nanoparticle Surface. Small, 2015, 11, 4894-4899.	5.2	21
79	Deviation from the Unimolecular Micelle Paradigm of PAMAM Dendrimers Induced by Strong Interligand Interactions. Journal of Physical Chemistry C, 2015, 119, 19475-19484.	1.5	6
80	DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chemical Research in Toxicology, 2015, 28, 1023-1035.	1.7	73
81	PAMAM Dendrimers and Graphene: Materials for Removing Aromatic Contaminants from Water. Environmental Science & Environmental	4.6	40
82	Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Advances, 2015, 5, 73963-73973.	1.7	80
83	Contrasting effects of nanoparticle–protein attraction on amyloid aggregation. RSC Advances, 2015, 5, 105489-105498.	1.7	56
84	Formation of a Protein Corona on Silver Nanoparticles Mediates Cellular Toxicity via Scavenger Receptors. Toxicological Sciences, 2015, 143, 136-146.	1.4	125
85	Thermostability and reversibility of silver nanoparticle–protein binding. Physical Chemistry Chemical Physics, 2015, 17, 1728-1739.	1.3	30
86	Structure–Function Relationship of PAMAM Dendrimers as Robust Oil Dispersants. Environmental Science & Environmental Scienc	4.6	21
87	Contrasting Effects of Nanoparticle Binding on Protein Denaturation. Journal of Physical Chemistry C, 2014, 118, 22069-22078.	1.5	30
88	Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding. Nanoscale, 2014, 6, 8340-8349.	2.8	41
89	Direct observation of a single nanoparticle–ubiquitin corona formation. Nanoscale, 2013, 5, 9162.	2.8	116
90	Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 2013, 13, 37.	1.7	326

#	Article	IF	Citations
91	Competitive Binding of Natural Amphiphiles with Graphene Derivatives. Scientific Reports, 2013, 3, 2273.	1.6	61
92	Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 2013, 24, 345101.	1.3	47
93	Effects of dendrimer oil dispersants on Dictyostelium discoideum. RSC Advances, 2013, 3, 25930.	1.7	6
94	Comparison of Nanotube–Protein Corona Composition in Cell Culture Media. Small, 2013, 9, 2171-2181.	5.2	119
95	Computational and Experimental Characterizations of Silver Nanoparticle–Apolipoprotein Biocorona. Journal of Physical Chemistry B, 2013, 117, 13451-13456.	1.2	50
96	InÂvitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environmental Pollution, 2013, 179, 258-267.	3.7	54
97	Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications. Physical Chemistry Chemical Physics, 2013, 15, 4477.	1.3	29
98	Binding of cytoskeletal proteins with silver nanoparticles. RSC Advances, 2013, 3, 22002.	1.7	36
99	Silver Nanoparticle Protein Corona Composition in Cell Culture Media. PLoS ONE, 2013, 8, e74001.	1.1	174
100	Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Applied Physics Letters, 2012, 101, 133702.	1.5	56
101	Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Applied Physics Letters, 2012, 100, 13703-137034.	1.5	54
102	Effects of surface functional groups on the formation of nanoparticle-protein corona. Applied Physics Letters, 2012, 101, 263701.	1.5	93
103	Understanding dendritic polymer–hydrocarbon interactions for oil dispersion. RSC Advances, 2012, 2, 9371.	1.7	16
104	PAMAM dendrimer for mitigating humic foulant. RSC Advances, 2012, 2, 7997.	1.7	17
105	Evidence for Charge-Transfer-Induced Conformational Changes in Carbon Nanostructure–Protein Corona. Journal of Physical Chemistry C, 2012, 116, 22098-22103.	1.5	39
106	Biophysical Methods for Assessing Plant Responses to Nanoparticle Exposure. Methods in Molecular Biology, 2012, 926, 383-398.	0.4	0
107	Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Particle and Fibre Toxicology, 2012, 9, 38.	2.8	45
108	Dendrimer–Fullerenol Soft-Condensed Nanoassembly. Journal of Physical Chemistry C, 2012, 116, 15775-15781.	1.5	16

#	Article	IF	CITATIONS
109	Adaptive Interactions between Zinc Oxide Nanoparticles and <i>Chlorella</i> sp Environmental Science & Description of the Science	4.6	139
110	A Carbon Nanotube Toxicity Paradigm Driven by Mast Cells and the ILâ€33/ST2 Axis. Small, 2012, 8, 2904-2912.	5.2	82
111	<i>In Vitro</i> Polymerization of Microtubules with a Fullerene Derivative. ACS Nano, 2011, 5, 6306-6314.	7.3	55
112	Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology, 2011, 5, 531-545.	1.6	75
113	A biophysical perspective of understanding nanoparticles at large. Physical Chemistry Chemical Physics, 2011, 13, 7273.	1.3	63
114	A Tris-Dendrimer for Hosting Diverse Chemical Species. Journal of Physical Chemistry C, 2011, 115, 12789-12796.	1.5	14
115	Multi-Walled Carbon Nanotube Instillation Impairs Pulmonary Function in C57BL/6 Mice. Particle and Fibre Toxicology, 2011, 8, 24.	2.8	120
116	Effect of bundling on the π plasmon energy in sub-nanometer single wall carbon nanotubes. Carbon, 2011, 49, 3803-3807.	5.4	8
117	Novel Murine Model of Chronic Granulomatous Lung Inflammation Elicited by Carbon Nanotubes. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 858-866.	1.4	72
118	Cytoprotective properties of a fullerene derivative against copper. Nanotechnology, 2011, 22, 405101.	1.3	8
119	Copper detection utilizing dendrimer and gold nanowire-induced surface plasmon resonance. Journal of Applied Physics, 2011, 109, 014911.	1.1	6
120	Biomolecular sensing using gold nanoparticle–coated ZnO nanotetrapods. Journal of Materials Research, 2011, 26, 2328-2333.	1.2	5
121	Acute toxicity of a mixture of copper and singleâ€walled carbon nanotubes to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2010, 29, 122-126.	2.2	64
122	Differential Uptake of Carbon Nanoparticles by Plant and Mammalian Cells. Small, 2010, 6, 612-617.	5.2	195
123	Calcium-enhanced exocytosis of gold nanoparticles. Applied Physics Letters, 2010, 97, .	1.5	23
124	Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis. Journal of Physical Chemistry C, 2010, 114, 16556-16561.	1.5	673
125	Fluorescence resonance energy transfer between phenanthrene and PAMAM dendrimers. Physical Chemistry Chemical Physics, 2010, 12, 9285.	1.3	35
126	Cell Trafficking of Carbon Nanotubes Based on Fluorescence Detection. Methods in Molecular Biology, 2010, 625, 135-151.	0.4	13

#	Article	IF	Citations
127	Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small, 2009, 5, 1128-1132.	5.2	478
128	Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter, 2009, 5, 4433.	1.2	116
129	Effects of Quantum Dots Adsorption on Algal Photosynthesis. Journal of Physical Chemistry C, 2009, 113, 10962-10966.	1.5	77
130	Experimental and simulation studies of a real-time polymerase chain reaction in the presence of a fullerene derivative. Nanotechnology, 2009, 20, 415101.	1.3	21
131	Single-Molecule Dendrimer-Hydrocarbon Interaction. The Open Nanoscience Journal, 2009, 2, 47-53.	1.8	2
132	Realâ€Time Translocation of Fullerene Reveals Cell Contraction. Small, 2008, 4, 1986-1992.	5.2	43
133	Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnology Journal, 2008, 3, 1078-1082.	1.8	60
134	A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA. International Journal of Molecular Sciences, 2008, 9, 662-667.	1.8	2
135	Carbon nanomaterials in biological systems. Journal of Physics Condensed Matter, 2007, 19, 373101.	0.7	65
136	Translocation of C60and Its Derivatives Across a Lipid Bilayer. Nano Letters, 2007, 7, 614-619.	4.5	369
137	Fiddling the string of carbon nanotubes with amphiphiles. Physical Chemistry Chemical Physics, 2007, 9, 439-447.	1.3	37
138	In vivo Biomodification of Lipid-Coated Carbon Nanotubes by Daphnia magna. Environmental Science & Env	4.6	304
139	Lesion Recognition and Cleavage by Endonuclease V:  A Single-Molecule Study. Biochemistry, 2007, 46, 7132-7137.	1.2	8
140	Coating Single-Walled Carbon Nanotubes with Phospholipids. Journal of Physical Chemistry B, 2006, 110, 2475-2478.	1.2	146
141	Lipid-Carbon Nanotube Self-Assembly in Aqueous Solution. Journal of the American Chemical Society, 2006, 128, 13656-13657.	6.6	107
142	Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Applied Physics Letters, 2006, 89, 143118.	1.5	39
143	Coupling of photon energy via a multiwalled carbon nanotube array. Applied Physics Letters, 2005, 87, 173102.	1.5	13
144	Diffusion of Single Star-Branched Dendrimer-like DNA. Journal of Physical Chemistry B, 2005, 109, 9839-9842.	1.2	32

#	Article	IF	Citations
145	Forced Unraveling of Nucleosomes Assembled on Heterogeneous DNA Using Core Histones, NAP-1, and ACF. Journal of Molecular Biology, 2005, 351, 89-99.	2.0	64
146	Single-molecule DNA flexibility in the presence of base-pair mismatch. Applied Physics Letters, 2005, 87, 033901.	1.5	25
147	Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. Journal of Applied Physics, 2004, 96, 6772-6775.	1.1	25
148	Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. Applied Physics Letters, 2004, 85, 4228-4230.	1.5	28
149	RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2473-2477.	4.5	302
150	Single Molecule Fluorescence Imaging of Phospholipid Monolayers at the Airâ^'Water Interface. Langmuir, 2001, 17, 3727-3733.	1.6	37
151	Hindered Diffusion in Polymer-Tethered Phospholipid Monolayers at the Airâ^'Water Interface:Â A Single Molecule Fluorescence Imaging Study. Langmuir, 2001, 17, 5076-5081.	1.6	30
152	Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam. Applied Physics Letters, 2000, 77, 34-36.	1.5	29
153	Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size. Journal of Applied Physics, 2000, 88, 5415-5420.	1.1	10
154	Effect of depolarization of scattered evanescent waves on particle-trapped near-field scanning optical microscopy. Applied Physics Letters, 1999, 75, 175-177.	1.5	22
155	Dependence of strength and depolarization of scattered evanescent waves on the size of laser-trapped dielectric particles. Optics Communications, 1999, 171, 205-211.	1.0	7
156	Characterization of trapping force on metallic Mie particles. Applied Optics, 1999, 38, 160.	2.1	51
157	Image enhancement in near-field scanning optical microscopy with laser-trapped metallic particles. Optics Letters, 1999, 24, 74.	1.7	44
158	$\label{thm:continuous} $$ \begin{array}{c} < \text{title} > \text{Direct measurement of evanescent-wave interference patterns with laser-trapped dielectric and metallic particles} < / \text{title} > . \ , 1999, \ , \ . \\ \end{array} $$$		1
159	Characterization of trapping force in the presence of spherical aberration. Journal of Modern Optics, 1998, 45, 2159-2168.	0.6	54
160	<title>Optimization of the enhanced evanescent wave for near-field microscopy</title> ., 1997, 2984, 42.		0
161	Trapping force by a high numerical-aperture microscope objective obeying the sine condition. Review of Scientific Instruments, 1997, 68, 3666-3668.	0.6	28
162	Characterization of trapping force in the presence of spherical aberration. , 0, .		4