
Pu Chun Ke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8202616/publications.pdf Version: 2024-02-01

DI CHUNKE

#	Article	IF	CITATIONS
1	Physical Adsorption of Charged Plastic Nanoparticles Affects Algal Photosynthesis. Journal of Physical Chemistry C, 2010, 114, 16556-16561.	1.5	673
2	Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants. Small, 2009, 5, 1128-1132.	5.2	478
3	A Decade of the Protein Corona. ACS Nano, 2017, 11, 11773-11776.	7.3	477
4	Translocation of C60and Its Derivatives Across a Lipid Bilayer. Nano Letters, 2007, 7, 614-619.	4.5	369
5	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
6	Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology, 2013, 13, 37.	1.7	326
7	In vivo Biomodification of Lipid-Coated Carbon Nanotubes byDaphnia magna. Environmental Science & Technology, 2007, 41, 3025-3029.	4.6	304
8	RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2473-2477.	4.5	302
9	Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	18.7	262
10	Nanoparticles' interactions with vasculature in diseases. Chemical Society Reviews, 2019, 48, 5381-5407.	18.7	231
11	Differential Uptake of Carbon Nanoparticles by Plant and Mammalian Cells. Small, 2010, 6, 612-617.	5.2	195
12	Silver Nanoparticle Protein Corona Composition in Cell Culture Media. PLoS ONE, 2013, 8, e74001.	1.1	174
13	Coating Single-Walled Carbon Nanotubes with Phospholipids. Journal of Physical Chemistry B, 2006, 110, 2475-2478.	1.2	146
14	Adaptive Interactions between Zinc Oxide Nanoparticles and <i>Chlorella</i> sp Environmental Science & Technology, 2012, 46, 12178-12185.	4.6	139
15	Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy. Nature Communications, 2019, 10, 3780.	5.8	132
16	Formation of a Protein Corona on Silver Nanoparticles Mediates Cellular Toxicity via Scavenger Receptors. Toxicological Sciences, 2015, 143, 136-146.	1.4	125
17	Multi-Walled Carbon Nanotube Instillation Impairs Pulmonary Function in C57BL/6 Mice. Particle and Fibre Toxicology, 2011, 8, 24.	2.8	120
18	Comparison of Nanotube–Protein Corona Composition in Cell Culture Media. Small, 2013, 9, 2171-2181.	5.2	119

#	Article	IF	CITATIONS
19	Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter, 2009, 5, 4433.	1.2	116
20	Direct observation of a single nanoparticle–ubiquitin corona formation. Nanoscale, 2013, 5, 9162.	2.8	116
21	Lipid-Carbon Nanotube Self-Assembly in Aqueous Solution. Journal of the American Chemical Society, 2006, 128, 13656-13657.	6.6	107
22	Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition. Scientific Reports, 2016, 6, 19463.	1.6	104
23	Graphene quantum dots against human IAPP aggregation and toxicity <i>in vivo</i> . Nanoscale, 2018, 10, 19995-20006.	2.8	100
24	Inhibition of hIAPP Amyloid Aggregation and Pancreatic β-Cell Toxicity by OH-Terminated PAMAM Dendrimer. Small, 2016, 12, 1615-1626.	5.2	99
25	Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine. Journal of the American Chemical Society, 2022, 144, 9184-9205.	6.6	98
26	Effects of surface functional groups on the formation of nanoparticle-protein corona. Applied Physics Letters, 2012, 101, 263701.	1.5	93
27	Poly(2-oxazoline)-based micro- and nanoparticles: A review. European Polymer Journal, 2017, 88, 486-515.	2.6	91
28	Mitigation of Amyloidosis with Nanomaterials. Advanced Materials, 2020, 32, e1901690.	11.1	87
29	A Carbon Nanotube Toxicity Paradigm Driven by Mast Cells and the ILâ€33/ST2 Axis. Small, 2012, 8, 2904-2912.	5.2	82
30	Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Advances, 2015, 5, 73963-73973.	1.7	80
31	Effects of Quantum Dots Adsorption on Algal Photosynthesis. Journal of Physical Chemistry C, 2009, 113, 10962-10966.	1.5	77
32	Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation. Nanotoxicology, 2011, 5, 531-545.	1.6	75
33	DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chemical Research in Toxicology, 2015, 28, 1023-1035.	1.7	73
34	Novel Murine Model of Chronic Granulomatous Lung Inflammation Elicited by Carbon Nanotubes. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 858-866.	1.4	72
35	Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells. Physical Chemistry Chemical Physics, 2016, 18, 94-100.	1.3	70
36	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67

#	Article	IF	CITATIONS
37	Carbon nanomaterials in biological systems. Journal of Physics Condensed Matter, 2007, 19, 373101.	0.7	65
38	Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation. Biomacromolecules, 2017, 18, 4249-4260.	2.6	65
39	Forced Unraveling of Nucleosomes Assembled on Heterogeneous DNA Using Core Histones, NAP-1, and ACF. Journal of Molecular Biology, 2005, 351, 89-99.	2.0	64
40	Acute toxicity of a mixture of copper and singleâ€walled carbon nanotubes to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2010, 29, 122-126.	2.2	64
41	A biophysical perspective of understanding nanoparticles at large. Physical Chemistry Chemical Physics, 2011, 13, 7273.	1.3	63
42	Competitive Binding of Natural Amphiphiles with Graphene Derivatives. Scientific Reports, 2013, 3, 2273.	1.6	61
43	Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnology Journal, 2008, 3, 1078-1082.	1.8	60
44	Mitigating Human IAPP Amyloidogenesis In Vivo with Chiral Silica Nanoribbons. Small, 2018, 14, e1802825.	5.2	57
45	Formation and cell translocation of carbon nanotube-fibrinogen protein corona. Applied Physics Letters, 2012, 101, 133702.	1.5	56
46	Contrasting effects of nanoparticle–protein attraction on amyloid aggregation. RSC Advances, 2015, 5, 105489-105498.	1.7	56
47	Dynamic intracellular exchange of nanomaterials' protein corona perturbs proteostasis and remodels cell metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
48	<i>In Vitro</i> Polymerization of Microtubules with a Fullerene Derivative. ACS Nano, 2011, 5, 6306-6314.	7.3	55
49	Characterization of trapping force in the presence of spherical aberration. Journal of Modern Optics, 1998, 45, 2159-2168.	0.6	54
50	Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Applied Physics Letters, 2012, 100, 13703-137034.	1.5	54
51	InÂvitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environmental Pollution, 2013, 179, 258-267.	3.7	54
52	Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomaterials Science, 2017, 5, 485-493.	2.6	53
53	Characterization of trapping force on metallic Mie particles. Applied Optics, 1999, 38, 160.	2.1	51
54	Computational and Experimental Characterizations of Silver Nanoparticle–Apolipoprotein Biocorona. Journal of Physical Chemistry B, 2013, 117, 13451-13456.	1.2	50

#	Article	IF	CITATIONS
55	Cofibrillization of Pathogenic and Functional Amyloid Proteins with Gold Nanoparticles against Amyloidogenesis. Biomacromolecules, 2017, 18, 4316-4322.	2.6	50
56	Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€Sheet Transition, and Formation of βâ€Barrel Intermediates. Small, 2019, 15, e1805166.	5.2	49
57	Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology, 2013, 24, 345101.	1.3	47
58	Amphiphilic surface chemistry of fullerenols is necessary for inhibiting the amyloid aggregation of alpha-synuclein NACore. Nanoscale, 2019, 11, 11933-11945.	2.8	47
59	Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Advanced Science, 2020, 7, 2001299.	5.6	47
60	Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Particle and Fibre Toxicology, 2012, 9, 38.	2.8	45
61	Image enhancement in near-field scanning optical microscopy with laser-trapped metallic particles. Optics Letters, 1999, 24, 74.	1.7	44
62	Pancreatic β-Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species. Scientific Reports, 2016, 6, 21274.	1.6	44
63	Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 434-444.	1.8	44
64	Spontaneous formation of β-sheet nano-barrels during the early aggregation of Alzheimer's amyloid beta. Nano Today, 2021, 38, 101125.	6.2	44
65	Realâ€ T ime Translocation of Fullerene Reveals Cell Contraction. Small, 2008, 4, 1986-1992.	5.2	43
66	NanoEHS beyond toxicity – focusing on biocorona. Environmental Science: Nano, 2017, 4, 1433-1454.	2.2	43
67	Sulfoxide ontaining Polymer oated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	5.6	43
68	Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline). Nanoscale, 2018, 10, 10863-10875.	2.8	42
69	Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding. Nanoscale, 2014, 6, 8340-8349.	2.8	41
70	Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS Sustainable Chemistry and Engineering, 2018, 6, 11704-11715.	3.2	41
71	PAMAM Dendrimers and Graphene: Materials for Removing Aromatic Contaminants from Water. Environmental Science & Technology, 2015, 49, 4490-4497.	4.6	40
72	Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Applied Physics Letters, 2006, 89, 143118.	1.5	39

#	Article	IF	CITATIONS
73	Evidence for Charge-Transfer-Induced Conformational Changes in Carbon Nanostructure–Protein Corona. Journal of Physical Chemistry C, 2012, 116, 22098-22103.	1.5	39
74	Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS Nano, 2018, 12, 6066-6078.	7.3	39
75	In Vivo Mitigation of Amyloidogenesis through Functional–Pathogenic Double-Protein Coronae. Nano Letters, 2018, 18, 5797-5804.	4.5	39
76	Modulating protein amyloid aggregation with nanomaterials. Environmental Science: Nano, 2017, 4, 1772-1783.	2.2	38
77	Determining the Size Exclusion for Nanoparticles in Citrus Leaves. Hortscience: A Publication of the American Society for Hortcultural Science, 2016, 51, 732-737.	0.5	38
78	Single Molecule Fluorescence Imaging of Phospholipid Monolayers at the Airâ^'Water Interface. Langmuir, 2001, 17, 3727-3733.	1.6	37
79	Fiddling the string of carbon nanotubes with amphiphiles. Physical Chemistry Chemical Physics, 2007, 9, 439-447.	1.3	37
80	Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 10462-10471.	4.0	37
81	Binding of cytoskeletal proteins with silver nanoparticles. RSC Advances, 2013, 3, 22002.	1.7	36
82	Serum albumin impedes the amyloid aggregation and hemolysis of human islet amyloid polypeptide and alpha synuclein. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1803-1809.	1.4	36
83	Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an <i>in vitro</i> blood brain barrier model. Biomaterials Science, 2018, 6, 314-323.	2.6	36
84	Fluorescence resonance energy transfer between phenanthrene and PAMAM dendrimers. Physical Chemistry Chemical Physics, 2010, 12, 9285.	1.3	35
85	Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Research, 2018, 11, 3636-3647.	5.8	35
86	Effects of Protein Corona on IAPP Amyloid Aggregation, Fibril Remodelling, and Cytotoxicity. Scientific Reports, 2017, 7, 2455.	1.6	34
87	Graphene quantum dots rescue protein dysregulation of pancreatic Î ² -cells exposed to human islet amyloid polypeptide. Nano Research, 2019, 12, 2827-2834.	5.8	34
88	Amyloid Aggregation under the Lens of Liquid–Liquid Phase Separation. Journal of Physical Chemistry Letters, 2021, 12, 368-378.	2.1	34
89	Diffusion of Single Star-Branched Dendrimer-like DNA. Journal of Physical Chemistry B, 2005, 109, 9839-9842.	1.2	32
90	Synthesis and in vitro properties of iron oxide nanoparticles grafted with brushed phosphorylcholine and polyethylene glycol. Polymer Chemistry, 2016, 7, 1931-1944.	1.9	32

#	Article	IF	CITATIONS
91	Amyloidosis inhibition, a new frontier of the protein corona. Nano Today, 2020, 35, 100937.	6.2	32
92	Hindered Diffusion in Polymer-Tethered Phospholipid Monolayers at the Airâ^'Water Interface:Â A Single Molecule Fluorescence Imaging Study. Langmuir, 2001, 17, 5076-5081.	1.6	30
93	Contrasting Effects of Nanoparticle Binding on Protein Denaturation. Journal of Physical Chemistry C, 2014, 118, 22069-22078.	1.5	30
94	Thermostability and reversibility of silver nanoparticle–protein binding. Physical Chemistry Chemical Physics, 2015, 17, 1728-1739.	1.3	30
95	Implications of the Human Gut–Brain and Gut–Cancer Axes for Future Nanomedicine. ACS Nano, 2020, 14, 14391-14416.	7.3	30
96	Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam. Applied Physics Letters, 2000, 77, 34-36.	1.5	29
97	Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications. Physical Chemistry Chemical Physics, 2013, 15, 4477.	1.3	29
98	Trapping force by a high numerical-aperture microscope objective obeying the sine condition. Review of Scientific Instruments, 1997, 68, 3666-3668.	0.6	28
99	Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. Applied Physics Letters, 2004, 85, 4228-4230.	1.5	28
100	Plasma Proteome Association and Catalytic Activity of Stealth Polymerâ€Grafted Iron Oxide Nanoparticles. Small, 2017, 13, 1701528.	5.2	27
101	Single-Molecular Heteroamyloidosis of Human Islet Amyloid Polypeptide. Nano Letters, 2019, 19, 6535-6546.	4.5	27
102	Nanosilver Mitigates Biofilm Formation via FapC Amyloidosis Inhibition. Small, 2020, 16, e1906674.	5.2	26
103	Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. Journal of Applied Physics, 2004, 96, 6772-6775.	1.1	25
104	Single-molecule DNA flexibility in the presence of base-pair mismatch. Applied Physics Letters, 2005, 87, 033901.	1.5	25
105	Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chemistry of Materials, 2021, 33, 6484-6500.	3.2	25
106	Physical and toxicological profiles of human IAPP amyloids and plaques. Science Bulletin, 2019, 64, 26-35.	4.3	24
107	Serum apolipoprotein A-I depletion is causative to silica nanoparticles–induced cardiovascular damage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
108	Calcium-enhanced exocytosis of gold nanoparticles. Applied Physics Letters, 2010, 97, .	1.5	23

#	Article	IF	CITATIONS
109	Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. Nanoscale, 2020, 12, 12317-12328.	2.8	23
110	Dynamic Protein Corona of Gold Nanoparticles with an Evolving Morphology. ACS Applied Materials & Interfaces, 2021, 13, 58238-58251.	4.0	23
111	Effect of depolarization of scattered evanescent waves on particle-trapped near-field scanning optical microscopy. Applied Physics Letters, 1999, 75, 175-177.	1.5	22
112	Nanomaterial synthesis, an enabler of amyloidosis inhibition against human diseases. Nanoscale, 2020, 12, 14422-14440.	2.8	22
113	Ultrasmall Molybdenum Disulfide Quantum Dots Cage Alzheimer's Amyloid Beta to Restore Membrane Fluidity. ACS Applied Materials & Interfaces, 2021, 13, 29936-29948.	4.0	22
114	A Framework of Paracellular Transport via Nanoparticlesâ€Induced Endothelial Leakiness. Advanced Science, 2021, 8, e2102519.	5.6	22
115	Experimental and simulation studies of a real-time polymerase chain reaction in the presence of a fullerene derivative. Nanotechnology, 2009, 20, 415101.	1.3	21
116	Structure–Function Relationship of PAMAM Dendrimers as Robust Oil Dispersants. Environmental Science & Technology, 2014, 48, 12868-12875.	4.6	21
117	A Thermodynamics Model for the Emergence of a Stripeâ€like Binary SAM on a Nanoparticle Surface. Small, 2015, 11, 4894-4899.	5.2	21
118	Zinc-coordination and C-peptide complexation: a potential mechanism for the endogenous inhibition of IAPP aggregation. Chemical Communications, 2017, 53, 9394-9397.	2.2	21
119	Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. Advanced Therapeutics, 2020, 3, 1900102.	1.6	21
120	Brushed polyethylene glycol and phosphorylcholine for grafting nanoparticles against protein binding. Polymer Chemistry, 2016, 7, 6875-6879.	1.9	20
121	Nanoparticle–proteome <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 6026-6041.	2.9	18
122	Nanomaterials as novel agents for amelioration of Parkinson's disease. Nano Today, 2021, 41, 101328.	6.2	18
123	PAMAM dendrimer for mitigating humic foulant. RSC Advances, 2012, 2, 7997.	1.7	17
124	Understanding dendritic polymer–hydrocarbon interactions for oil dispersion. RSC Advances, 2012, 2, 9371.	1.7	16
125	Dendrimer–Fullerenol Soft-Condensed Nanoassembly. Journal of Physical Chemistry C, 2012, 116, 15775-15781.	1.5	16
126	Differential Roles of Plasma Protein Corona on Immune Cell Association and Cytokine Secretion of Oligomeric and Fibrillar Beta-Amyloid. Biomacromolecules, 2019, 20, 4208-4217.	2.6	16

#	Article	IF	CITATIONS
127	Multimodal Nanoprobe for Pancreatic Beta Cell Detection and Amyloidosis Mitigation. Chemistry of Materials, 2020, 32, 1080-1088.	3.2	16
128	Brain Accumulation and Toxicity Profiles of Silica Nanoparticles: The Influence of Size and Exposure Route. Environmental Science & amp; Technology, 2022, 56, 8319-8325.	4.6	16
129	Human Plasma Protein Corona of Aβ Amyloid and Its Impact on Islet Amyloid Polypeptide Cross-Seeding. Biomacromolecules, 2020, 21, 988-998.	2.6	15
130	A Tris-Dendrimer for Hosting Diverse Chemical Species. Journal of Physical Chemistry C, 2011, 115, 12789-12796.	1.5	14
131	Graphene quantum dots obstruct the membrane axis of Alzheimer's amyloid beta. Physical Chemistry Chemical Physics, 2021, 24, 86-97.	1.3	14
132	Coupling of photon energy via a multiwalled carbon nanotube array. Applied Physics Letters, 2005, 87, 173102.	1.5	13
133	Novel Strategies to Protect and Visualize Pancreatic Î ² Cells in Diabetes. Trends in Endocrinology and Metabolism, 2020, 31, 905-917.	3.1	13
134	<i>In vitro</i> and <i>in vivo</i> models for anti-amyloidosis nanomedicines. Nanoscale Horizons, 2021, 6, 95-119.	4.1	13
135	Cell Trafficking of Carbon Nanotubes Based on Fluorescence Detection. Methods in Molecular Biology, 2010, 625, 135-151.	0.4	13
136	Lysophosphatidylcholine modulates the aggregation of human islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2017, 19, 30627-30635.	1.3	12
137	Synthesis and identification of novel pyridazinylpyrazolone based diazo compounds as inhibitors of human islet amyloid polypeptide aggregation. Bioorganic Chemistry, 2019, 84, 339-346.	2.0	12
138	The Membrane Axis of Alzheimer's Nanomedicine. Advanced NanoBiomed Research, 2021, 1, 2000040.	1.7	12
139	Depolarization of evanescent waves scattered by laser-trapped gold particles: Effect of particle size. Journal of Applied Physics, 2000, 88, 5415-5420.	1.1	10
140	Lesion Recognition and Cleavage by Endonuclease V:  A Single-Molecule Study. Biochemistry, 2007, 46, 7132-7137.	1.2	8
141	Effect of bundling on the π plasmon energy in sub-nanometer single wall carbon nanotubes. Carbon, 2011, 49, 3803-3807.	5.4	8
142	Cytoprotective properties of a fullerene derivative against copper. Nanotechnology, 2011, 22, 405101.	1.3	8
143	Dependence of strength and depolarization of scattered evanescent waves on the size of laser-trapped dielectric particles. Optics Communications, 1999, 171, 205-211.	1.0	7
144	Copper detection utilizing dendrimer and gold nanowire-induced surface plasmon resonance. Journal of Applied Physics, 2011, 109, 014911.	1.1	6

#	Article	IF	CITATIONS
145	Effects of dendrimer oil dispersants on Dictyostelium discoideum. RSC Advances, 2013, 3, 25930.	1.7	6
146	Deviation from the Unimolecular Micelle Paradigm of PAMAM Dendrimers Induced by Strong Interligand Interactions. Journal of Physical Chemistry C, 2015, 119, 19475-19484.	1.5	6
147	Biomolecular sensing using gold nanoparticle–coated ZnO nanotetrapods. Journal of Materials Research, 2011, 26, 2328-2333.	1.2	5
148	Characterization of trapping force in the presence of spherical aberration. , 0, .		4
149	A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA. International Journal of Molecular Sciences, 2008, 9, 662-667.	1.8	2
150	Amyloidosis: Mitigation of Amyloidosis with Nanomaterials (Adv. Mater. 18/2020). Advanced Materials, 2020, 32, 2070146.	11.1	2
151	Single-Molecule Dendrimer-Hydrocarbon Interaction. The Open Nanoscience Journal, 2009, 2, 47-53.	1.8	2
152	<title>Direct measurement of evanescent-wave interference patterns with laser-trapped dielectric and metallic particles</title> ., 1999, , .		1
153	Peptide Selfâ€Assembly: Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€Sheet Transition, and Formation of βâ€Barrel Intermediates (Small 18/2019). Small, 2019, 15, 1970093.	5.2	1
154	<title>Optimization of the enhanced evanescent wave for near-field microscopy</title> . , 1997, 2984, 42.		0
155	Biophysical Methods for Assessing Plant Responses to Nanoparticle Exposure. Methods in Molecular Biology, 2012, 926, 383-398.	0.4	0
156	Striped Nanoparticles: A Thermodynamics Model for the Emergence of a Stripeâ€like Binary SAM on a Nanoparticle Surface (Small 37/2015). Small, 2015, 11, 4798-4798.	5.2	0
157	Multiscale Modeling of Dendrimers for Biological Applications. Biophysical Journal, 2016, 110, 546a.	0.2	0
158	Brushed Polyethylene Glycol and Phosphorylcholine as Promising Grafting Agents against Protein Binding. Biophysical Journal, 2017, 112, 350a.	0.2	0
159	Mesoscopic Properties and Molecular Mechanisms of IAPP Amyloid Inhibition and Remodeling with Small Molecules. Biophysical Journal, 2017, 112, 340a.	0.2	0
160	Effect of Bio-molecules on Human Islet Amyloid Polypeptide Aggregation, Fibril Remodeling and Cytoxicity. Biophysical Journal, 2018, 114, 228a.	0.2	0
161	Amyloid Beta Pathogenesis: Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC (Adv. Sci.) Tj ETQc	1 1 0.784 5.6	4314 rgBT /
162	Editorial: Application for Nanotechnology for the Treatment of Brain Diseases and Disorders.	2.0	0

Frontiers in Bioengineering and Biotechnology, 2021, 9, 743160.

2.0 0