Uwe Posset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8202342/publications.pdf

Version: 2024-02-01

361413 477307 39 932 20 29 h-index citations g-index papers 42 42 42 890 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Largeâ€Area Electrochromic Devices on Flexible Polymer Substrates with High Optical Contrast and Enhanced Cycling Stability. Advanced Materials Technologies, 2021, 6, 2000836.	5.8	30
2	Electrochromic Polymer Ink Derived from a Sidechainâ€Modified EDOT for Electrochromic Devices with Colorless Bright State. ChemElectroChem, 2021, 8, 726-734.	3.4	4
3	Mixed metal oxides as optically-passive ion storage layers in electrochromic devices based on metallopolymers. Solar Energy Materials and Solar Cells, 2021, 223, 110950.	6.2	8
4	Charge balancing and optical contrast optimization in Fe-MEPE/Ni1-xO electrochromic devices containing a Li reference electrode. Solar Energy Materials and Solar Cells, 2021, 227, 111080.	6.2	3
5	New Rollâ€toâ€Roll Processable PEDOTâ€Based Polymer with Colorless Bleached State for Flexible Electrochromic Devices. Advanced Functional Materials, 2020, 30, 1906254.	14.9	68
6	Avoiding Voltage-Induced Degradation in PET-ITO-Based Flexible Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36695-36705.	8.0	26
7	Redox Electrolytes for Hybrid Type II Electrochromic Devices with Feâ^'MEPE or Ni 1â^' x O as Electrode Materials. ChemElectroChem, 2020, 7, 3274-3283.	3.4	8
8	Metallopolymers and non-stoichiometric nickel oxide: Towards neutral tint large-area electrochromic devices. Solar Energy Materials and Solar Cells, 2019, 200, 110002.	6.2	10
9	Electrochromic metallo-supramolecular polymers showing visible and near-infrared light transmittance modulation. Solar Energy Materials and Solar Cells, 2019, 200, 110001.	6.2	24
10	A study of the effect of pyridine linkers on the viscosity and electrochromic properties of metallo-supramolecular coordination polymers. Journal of Materials Chemistry C, 2018, 6, 3310-3321.	5.5	51
11	Oneâ€Step Preparation of Viologenâ€TiO ₂ Nanoparticles via a Hydrothermally Assisted Sol–Gel Process for Use in Electrochromic Films and Devices. Particle and Particle Systems Characterization, 2018, 35, 1800142.	2.3	2
12	Stateâ€ofâ€theâ€Art Neutral Tint Multichromophoric Polymers for Highâ€Contrast Seeâ€Through Electrochromic Devices. Advanced Functional Materials, 2016, 26, 5240-5246.	14.9	63
13	Plastic electrochromic devices based on viologen-modified TiO2 films prepared at low temperature. Solar Energy Materials and Solar Cells, 2016, 157, 624-635.	6.2	34
14	Organic Electrochromic Polymers: State-of-the-Art Neutral Tint Multichromophoric Polymers for High-Contrast See-Through Electrochromic Devices (Adv. Funct. Mater. 29/2016). Advanced Functional Materials, 2016, 26, 5239-5239.	14.9	2
15	Chemically fabricated LiFePO4 thin film electrode for transparent batteries and electrochromic devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 214, 81-86.	3.5	11
16	In operando XAFS experiments on flexible electrochromic devices based on Fe(II)-metallo-supramolecular polyelectrolytes and vanadium oxide. Solar Energy Materials and Solar Cells, 2016, 147, 61-67.	6.2	22
17	Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. Journal of Power Sources, 2016, 301, 35-40.	7.8	44
18	Environmental assessment of electrically controlled variable light transmittance devices. RSC Advances, 2012, 2, 5990.	3.6	14

#	Article	IF	CITATIONS
19	Sol–gel vanadium oxide thin films for a flexible electronically conductive polymeric substrate. Solar Energy Materials and Solar Cells, 2012, 99, 62-72.	6.2	25
20	Electrochromic devices based on in situ polymerised EDOT and Prussian Blue: influence of transparent conducting oxide and electrolyte compositionâ€"towards up-scaling. New Journal of Chemistry, 2011, 35, 2314.	2.8	25
21	Mechanistic study of the redox process of an in situ oxidatively polymerised poly(3,4-ethylene-dioxythiophene) film. Solar Energy Materials and Solar Cells, 2008, 92, 140-145.	6.2	27
22	Influence of xerogel matrices and co-ligands on luminescence parameters in materials with an europium(III) cryptate. Journal of Non-Crystalline Solids, 2005, 351, 2047-2056.	3.1	5
23	Structure–property correlations in hybrid sol–gel coatings as revealed by Raman spectroscopy. Optical Materials, 2004, 26, 173-179.	3.6	20
24	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 369-373.	2.4	41
25	Confocal Micro-Raman Spectroscopy: Theory and Application to a Hybrid Polymer Coating. Applied Spectroscopy, 2002, 56, 536-540.	2.2	60
26	Confocal Raman investigations on hybrid polymer coatings. Vibrational Spectroscopy, 2002, 29, 245-249.	2.2	46
27	FT-Raman Spectroscopic Investigations of Titanium Alkoxides with Polymerizable Organic Ligands. Applied Spectroscopy, 2000, 54, 390-395.	2.2	5
28	Raman Spectra and Intermolecular Vibrational Coupling Behaviour of Binary Mixed Crystals of (dppm)M(CO)4 Complexes (M=Cr, Mo, W). Journal of Raman Spectroscopy, 1996, 27, 419-423.	2.5	2
29	Normal coordinate analysis of MSiH3 moieties in transition metal complexes and comparison to results obtained for silyl halides. Vibrational Spectroscopy, 1996, 10, 161-167.	2.2	7
30	Synthesis and Reactivity of Silicon Transition Metal Complexes, 34. Pentachlordisilanyl―und Disilanylâ€Komplexe von MolybdÃn und Wolfram: Darstellung, Struktur und spektroskopische Charakterisierung. Chemische Berichte, 1995, 128, 1109-1115.	0.2	36
31	Interpretation of high resolution low-temperature $\hat{l}\frac{1}{2}$ (CO) Raman spectra of polycrystalline chelate-substituted transition metal carbonyls. Journal of Molecular Structure, 1995, 349, 427-430.	3.6	6
32	Structural and electronic influence of aluminum trichloride on a benzonaphthopyranone. Journal of Molecular Structure, 1995, 349, 431-434.	3.6	5
33	Normal Coordinate Analysis of M-CH ₃ -Moieties in Transition Metal Complexes and Comparison to Results Obtained for Methylhalides. Spectroscopy Letters, 1995, 28, 1075-1083.	1.0	2
34	Synthesis and reactivity of silicon transition metal complexes. Part 27. Metallotrihydridosilanes of molybdenum and tungsten: synthesis, characterization, and vibrational studies of $(C5R5)(OC)2(Me3P)M-SiH3$ (M = Mo, W; R = H, Me). Organometallics, 1995, 14, 5622-5627.	2.3	27
35	The influence of aluminum trichloride on a configuratively labile lactone-bridged biaryl: quantum chemical calculations and optical spectroscopy. Inorganica Chimica Acta, 1994, 222, 247-253.	2.4	9
36	Raman spectra of ditertiary phosphines Ph2P-(CH2)n-PPh2 (n = $1\hat{a}\in$ "4) and coordination shifts in (CO)4Mo[Ph2P-(CH2)n-PPh2] (n = 1, 2). Vibrational Spectroscopy, 1994, 7, 49-60.	2.2	8

#	# ARTICLE	IF	CITATIONS
37	Polarized Raman Spectra from Some Sol-Gel Precursors and Micro-Raman Study Copolymer. Applied Spectroscopy, 1993, 47, 1600-1603.	y of One Selected 2.2	40
38	(Hydrosilyl)tungsten complexes of the type (C5Me5)(OC)2(Me3P)W-SiR3 (SiR: 1993, 32, 303-309.	3 = SiH3, SiH2Me, SiHMe2,) Tj ETQq0 0 0 4.0) rgBT /Overlock 60
39	Raman spectra and group theoretical treatment of polycrystalline (dppm)Mo(C Vibrational Spectroscopy, 1992, 3, 47-53.	CO)4 and (dppe)Mo(CO)4. 2.2	7