Luca Gasperini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8202291/publications.pdf

Version: 2024-02-01

706676 889612 1,633 19 14 19 citations g-index h-index papers 21 21 21 3201 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Numerical and experimental simulation of a dynamic-rotational 3D cell culture for stratified living tissue models. Biofabrication, 2022, 14, 025022.	3.7	2
2	Bioinks Enriched with ECM Components Obtained by Supercritical Extraction. Biomolecules, 2022, 12, 394.	1.8	5
3	Rescuing key native traits in cultured dermal papilla cells for human hair regeneration. Journal of Advanced Research, 2021, 30, 103-112.	4.4	21
4	Microscopyâ€guided laser ablation for the creation of complex skin models with folliculoid appendages. Bioengineering and Translational Medicine, 2021, 6, e10195.	3.9	4
5	3D flow-focusing microfluidic biofabrication: One-chip-fits-all hydrogel fiber architectures. Applied Materials Today, 2021, 23, 101013.	2.3	17
6	Convection patterns gradients of non-living and living micro-entities in hydrogels. Applied Materials Today, 2020, 21, 100859.	2.3	3
7	High-throughput fabrication of cell-laden 3D biomaterial gradients. Materials Horizons, 2020, 7, 2414-2421.	6.4	20
8	The stiffness of living tissues and its implications for tissue engineering. Nature Reviews Materials, 2020, 5, 351-370.	23.3	756
9	Microfluidics for Processing of Biomaterials. Advances in Experimental Medicine and Biology, 2020, 1230, 15-25.	0.8	2
10	3D Bioprinting Technology: Scientific Aspects and Ethical Issues. Science and Engineering Ethics, 2018, 24, 335-348.	1.7	16
11	Control of osmotic pressure to improve cell viability in cellâ€laden tissue engineering constructs. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1063-e1067.	1.3	22
12	Synthesis, mechanical and thermal rheological properties of new gellan gum derivatives. International Journal of Biological Macromolecules, 2017, 98, 646-653.	3.6	40
13	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	2.6	45
14	Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Materials Letters, 2016, 182, 309-313.	1.3	19
15	Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomaterialia, 2016, 41, 119-132.	4.1	47
16	Assessing the Impact of Electrohydrodynamic Jetting on Encapsulated Cell Viability, Proliferation, and Ability to Self-Assemble in Three-Dimensional Structures. Tissue Engineering - Part C: Methods, 2015, 21, 631-638.	1.1	20
17	An Electrohydrodynamic Bioprinter for Alginate Hydrogels Containing Living Cells. Tissue Engineering - Part C: Methods, 2015, 21, 123-132.	1.1	69
18	Natural polymers for the microencapsulation of cells. Journal of the Royal Society Interface, 2014, 11, 20140817.	1.5	480

#	Article	IF	CITATIONS
19	Microencapsulation of cells in alginate through an electrohydrodynamic process. Journal of Bioactive and Compatible Polymers, 2013, 28, 413-425.	0.8	45