

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8201996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death and Disease, 2022, 13, 16.	2.7	36
2	Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. Nature Communications, 2022, 13, .	5.8	48
3	Targeting the IRAK1–S100A9 Axis Overcomes Resistance to Paclitaxel in Nasopharyngeal Carcinoma. Cancer Research, 2021, 81, 1413-1425.	0.4	19
4	Stromal induction of BRD4 phosphorylation Results in Chromatin Remodeling and BET inhibitor Resistance in Colorectal Cancer. Nature Communications, 2021, 12, 4441.	5.8	49
5	Targeting enhancer reprogramming to mitigate MEK inhibitor resistance in preclinical models of advanced ovarian cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	6
6	CREBBP cooperates with the cell cycle machinery to attenuate chidamide sensitivity in relapsed/refractory diffuse large B-cell lymphoma. Cancer Letters, 2021, 521, 268-280.	3.2	10
7	Interleukin enhancerâ€binding factor 2 promotes cell proliferation and DNA damage response in metastatic melanoma. Clinical and Translational Medicine, 2021, 11, e608.	1.7	8
8	Inhibition of the PLK1 oupled Cell Cycle Machinery Overcomes Resistance to Oxaliplatin in Colorectal Cancer. Advanced Science, 2021, 8, e2100759.	5.6	29
9	EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nature Communications, 2020, 11, 5878.	5.8	29
10	HER2-L755S mutation induces hyperactive MAPK and PI3K-mTOR signaling, leading to resistance to HER2 tyrosine kinase inhibitor treatment. Cell Cycle, 2019, 18, 1513-1522.	1.3	15
11	Methionine is a metabolic dependency of tumor-initiating cells. Nature Medicine, 2019, 25, 825-837.	15.2	226
12	Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget, 2018, 9, 33416-33439.	0.8	107
13	KDM4B-regulated unfolded protein response as a therapeutic vulnerability in <i>PTEN</i> -deficient breast cancer. Journal of Experimental Medicine, 2018, 215, 2833-2849.	4.2	33
14	Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5990-E5999.	3.3	203
15	KDM6B Counteracts EZH2-Mediated Suppression of <i>IGFBP5</i> to Confer Resistance to PI3K/AKT Inhibitor Treatment in Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 1973-1983.	1.9	35
16	MiR-200a Regulates CDK4/6 Inhibitor Effect by Targeting CDK6 in MetastaticÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 1955-1964.	0.3	32
17	Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nature Medicine, 2017, 23, 1319-1330.	15.2	116
18	<i>VHL</i> Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. Cancer Discovery, 2017, 7, 1284-1305.	7.7	111

QIANG YU

#	Article	IF	CITATIONS
19	Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. Journal of Clinical Investigation, 2017, 127, 3689-3701.	3.9	71
20	EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood, 2016, 128, 948-958.	0.6	110
21	Molecular switch of EZH2 in hypoxia. Cell Cycle, 2016, 15, 3007-3008.	1.3	6
22	HIFI-α activation underlies a functional switch in the paradoxical role of Ezh2/PRC2 in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3735-44.	3.3	62
23	Preclinical pharmacokinetic studies of 3-deazaneplanocin A, a potent epigenetic anticancer agent, and its human pharmacokinetic prediction using GastroPlusâ,,¢. European Journal of Pharmaceutical Sciences, 2015, 77, 290-302.	1.9	29
24	IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nature Communications, 2015, 6, 8746.	5.8	125
25	3â€Deazaneplanocinâ€A and Neplanocinâ€A Analogues and Their Effects on Apoptotic Cell Death. ChemMedChem, 2015, 10, 173-182.	1.6	24
26	Elevated expression of long intergenic nonâ€coding RNA HOTAIR in a basalâ€like variant of MCFâ€7 breast cancer cells. Molecular Carcinogenesis, 2015, 54, 1656-1667.	1.3	35
27	Functional Characterization of D9, a Novel Deazaneplanocin A (DZNep) Analog, in Targeting Acute Myeloid Leukemia (AML). PLoS ONE, 2015, 10, e0122983.	1.1	18
28	Herbal compound Naoshuantong capsule attenuates retinal injury in ischemia/reperfusion rat model by inhibiting apoptosis. International Journal of Clinical and Experimental Medicine, 2015, 8, 12252-63.	1.3	3
29	The KDM2B- Let-7b -EZH2 Axis in Myelodysplastic Syndromes as a Target for Combined Epigenetic Therapy. PLoS ONE, 2014, 9, e107817.	1.1	27
30	Tumor Necrosis Factor-α and Apoptosis Induction in Melanoma Cells through Histone Modification by 3-Deazaneplanocin A. Journal of Investigative Dermatology, 2014, 134, 1470-1473.	0.3	3
31	EZH2-Mediated Inactivation of IFN-γ-JAK-STAT1 Signaling Is an Effective Therapeutic Target in MYC-Driven Prostate Cancer. Cell Reports, 2014, 8, 204-216.	2.9	87
32	RASAL2 activates RAC1 to promote triple-negative breast cancer progression. Journal of Clinical Investigation, 2014, 124, 5291-5304.	3.9	72
33	PDK1 Signaling Toward PLK1–MYC Activation Confers Oncogenic Transformation, Tumor-Initiating Cell Activation, and Resistance to mTOR-Targeted Therapy. Cancer Discovery, 2013, 3, 1156-1171.	7.7	119
34	EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood, 2013, 121, 4512-4520.	0.6	131
35	Protein tyrosine phosphatase <i>UBASH3B</i> is overexpressed in triple-negative breast cancer and promotes invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11121-11126.	3.3	57
36	Molecular mechanisms of tumor resistance to PI3K-mTOR-targeted therapy. Chinese Journal of Cancer, 2013, 32, 376-379.	4.9	32

QIANG YU

#	Article	IF	CITATIONS
37	Heterogeneous epigenetic regulation of <i><i>TIMP3</i></i> in prostate cancer. Epigenetics, 2012, 7, 1279-1289.	1.3	34
38	<i>TP53</i> Genomic Status Regulates Sensitivity of Gastric Cancer Cells to the Histone Methylation Inhibitor 3-Deazaneplanocin A (DZNep). Clinical Cancer Research, 2012, 18, 4201-4212.	3.2	65
39	Glycine Decarboxylase Activity Drives Non-Small Cell Lung Cancer Tumor-Initiating Cells and Tumorigenesis. Cell, 2012, 148, 259-272.	13.5	593
40	Loading 3-deazaneplanocin A into pegylated unilamellar liposomes by forming transient phenylboronic acid–drug complex and its pharmacokinetic features in Sprague–Dawley rats. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 323-331.	2.0	15
41	TXNIP (VDUP-1, TBP-2): A major redox regulator commonly suppressed in cancer by epigenetic mechanisms. International Journal of Biochemistry and Cell Biology, 2011, 43, 1668-1673.	1.2	94
42	Context-Specific Regulation of NF-κB Target Gene Expression by EZH2 in Breast Cancers. Molecular Cell, 2011, 43, 798-810.	4.5	338
43	Determinants of Sensitivity to DZNep Induced Apoptosis in Multiple Myeloma Cells. PLoS ONE, 2011, 6, e21583.	1.1	29
44	The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood, 2011, 118, 2830-2839.	0.6	205
45	Quantification of 3-deazaneplanocin A, a novel epigenetic anticancer agent, in rat biosamples by hydrophilic interaction liquid chromatography–tandem mass spectrometric detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 285-290.	1.2	7
46	PDK1-driven Myc signaling regulates cellular response to mTOR inhibitors. Cell Cycle, 2011, 10, 1019-1020.	1.3	1
47	B55β-Associated PP2A Complex Controls PDK1-Directed Myc Signaling and Modulates Rapamycin Sensitivity in Colorectal Cancer. Cancer Cell, 2010, 18, 459-471.	7.7	104
48	Systems Pharmacology in Cancer. , 2010, , 377-397.		0
49	miR-449 regulates CDK-Rb-E2F1 through an auto-regulatory feedback circuit. Cell Cycle, 2010, 9, 213-214.	1.3	35
50	Dual Regulation of Cdc25A by Chk1 and p53-ATF3 in DNA Replication Checkpoint Control. Journal of Biological Chemistry, 2009, 284, 4132-4139.	1.6	38
51	<i>miR-449a</i> and <i>miR-449b</i> are direct transcriptional targets of E2F1 and negatively regulate pRb–E2F1 activity through a feedback loop by targeting <i>CDK6</i> and <i>CDC25A</i> . Genes and Development, 2009, 23, 2388-2393.	2.7	242
52	Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Molecular Cancer Therapeutics, 2009, 8, 3191-3202.	1.9	65
53	The E2F family and the role of E2F1 in apoptosis. International Journal of Biochemistry and Cell Biology, 2009, 41, 2389-2397.	1.2	57
54	BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A. Breast Cancer Research, 2009, 11, R63.	2.2	98

QIANG YU

#	Article	IF	CITATIONS
55	CDKN1C (p57KIP2) Is a Direct Target of EZH2 and Suppressed by Multiple Epigenetic Mechanisms in Breast Cancer Cells. PLoS ONE, 2009, 4, e5011.	1.1	155
56	Intrahepatic biliary cystadenocarcinoma: clinical analysis of 4 cases. Hepatobiliary and Pancreatic Diseases International, 2009, 8, 71-4.	0.6	12
57	DACT3 Is an Epigenetic Regulator of Wnt/β-Catenin Signaling in Colorectal Cancer and Is a Therapeutic Target of Histone Modifications. Cancer Cell, 2008, 13, 529-541.	7.7	216
58	Cancer gene silencing without DNA hypermethylation. Epigenetics, 2008, 3, 315-317.	1.3	8
59	Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes and Development, 2007, 21, 1050-1063.	2.7	804
60	Ribosomal Protein S27-like, a p53-Inducible Modulator of Cell Fate in Response to Genotoxic Stress. Cancer Research, 2007, 67, 11317-11326.	0.4	56
61	c-Myc overexpression sensitizes Bim-mediated Bax activation for apoptosis induced by histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) through regulating Bcl-2/Bcl-xL expression. International Journal of Biochemistry and Cell Biology, 2007, 39, 1016-1025.	1.2	21
62	A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome. Cell, 2006, 124, 207-219.	13.5	1,060
63	Restoring p53-mediated apoptosis in cancer cells: New opportunities for cancer therapy. Drug Resistance Updates, 2006, 9, 19-25.	6.5	71
64	Apoptosis Signal-regulating Kinase 1 Is a Direct Target of E2F1 and Contributes to Histone Deacetylase Inhibitorinduced Apoptosis through Positive Feedback Regulation of E2F1 Apoptotic Activity. Journal of Biological Chemistry, 2006, 281, 10508-10515.	1.6	60
65	Pharmacologic Modulation of Glycogen Synthase Kinase-3β Promotes p53-Dependent Apoptosis through a Direct Bax-Mediated Mitochondrial Pathway in Colorectal Cancer Cells. Cancer Research, 2005, 65, 9012-9020.	0.4	115
66	Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16090-16095.	3.3	234
67	p53-regulated Transcriptional Program Associated with Genotoxic Stress-induced Apoptosis. Journal of Biological Chemistry, 2004, 279, 21183-21192.	1.6	133
68	Identification of Myc-mediated Death Response Pathways by Microarray Analysis. Journal of Biological Chemistry, 2002, 277, 13059-13066.	1.6	27
69	UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G(2)-M checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Research, 2002, 62, 5743-8.	0.4	115
70	Antisense inhibition of Chk2/hCds1 expression attenuates DNA damage-induced S and G2 checkpoints and enhances apoptotic activity in HEK-293 cells. FEBS Letters, 2001, 505, 7-12.	1.3	62
71	A truncated cytoplasmic topoisomerase IlÎ \pm in a drug-resistant lung cancer cell line is encoded by aTOP2A allele with a partial deletion of exon 34. , 2000, 85, 534-539.		20
72	Two COOH-Terminal Truncated Cytoplasmic Forms of Topoisomerase IIα in a VP-16-Selected Lung Cancer Cell Line Result from Partial Gene Deletion and Alternative Splicingâ€. Biochemistry, 1997, 36, 5868-5877.	1.2	30