Aarti Jagannath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8201991/publications.pdf

Version: 2024-02-01

471061 552369 1,383 26 17 26 citations h-index g-index papers 37 37 37 2529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photic Entrainment of the Circadian System. International Journal of Molecular Sciences, 2022, 23, 729.	1.8	38
2	Patient fibroblast circadian rhythms predict lithium sensitivity in bipolar disorder. Molecular Psychiatry, 2021, 26, 5252-5265.	4.1	18
3	Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nature Communications, 2021, 12, 2113.	5.8	66
4	Dystrophin involvement in peripheral circadian SRF signalling. Life Science Alliance, 2021, 4, e202101014.	1.3	1
5	The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. IScience, 2021, 24, 103144.	1.9	34
6	The hypothalamic link between arousal and sleep homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	3.3	19
7	Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Frontiers in Neuroscience, 2020, 14, 636.	1.4	47
8	Coldâ€induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO Journal, 2020, 39, e105604.	3.5	11
9	Melanopsin: photoreceptors, physiology and potential. Current Opinion in Physiology, 2018, 5, 68-74.	0.9	8
10	Differential roles for cryptochromes in the mammalian retinal clock. FASEB Journal, 2018, 32, 4302-4314.	0.2	20
11	Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance. Journal of Neuroscience, 2017, 37, 3555-3567.	1.7	13
12	The genetics of circadian rhythms, sleep and health. Human Molecular Genetics, 2017, 26, R128-R138.	1.4	150
13	Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light. PLoS Biology, 2016, 14, e1002482.	2.6	129
14	Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye, 2016, 30, 247-254.	1.1	59
15	Isoforms of Melanopsin Mediate Different Behavioral Responses to Light. Current Biology, 2015, 25, 2430-2434.	1.8	32
16	Identification of rod- and cone-specific expression signatures to identify candidate genes for retinal disease. Experimental Eye Research, 2015, 132, 161-173.	1.2	5
17	Photic Regulation of Clock Systems. Methods in Enzymology, 2015, 552, 125-143.	0.4	104
18	Using siRNA to define functional interactions between melanopsin and multiple G Protein partners. Cellular and Molecular Life Sciences, 2015, 72, 165-179.	2.4	29

#	Article	IF	CITATIONS
19	The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis. Cell, 2015, 162, 607-621.	13.5	74
20	Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light. PLoS ONE, 2015, 10, e0125523.	1.1	33
21	<scp>CREB</scp> signalling in bipolar disease (Commentary on Gaspar <i>et al</i> .). European Journal of Neuroscience, 2014, 40, 2205-2205.	1.2	1
22	The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock. Cell, 2013, 154, 1100-1111.	13.5	175
23	Sleep and circadian rhythm disruption in neuropsychiatric illness. Current Opinion in Neurobiology, 2013, 23, 888-894.	2.0	170
24	Profound defects in pupillary responses to light in TRPMâ€channel null mice: a role for TRPM channels in nonâ€imageâ€forming photoreception. European Journal of Neuroscience, 2012, 35, 34-43.	1.2	52
25	Localization of Double-stranded Small Interfering RNA to Cytoplasmic Processing Bodies Is Ago2 Dependent and Results in Up-Regulation of GW182 and Argonaute-2. Molecular Biology of the Cell, 2009, 20, 521-529.	0.9	69
26	RNA interference based gene therapy for neurological disease. Briefings in Functional Genomics & Proteomics, 2007, 6, 40-49.	3.8	18