David A Mahns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8201574/publications.pdf

Version: 2024-02-01

414414 304743 1,204 51 22 32 citations h-index g-index papers 53 53 53 1483 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterisation of the Mouse Cerebellar Proteome in the GFAP-IL6 Model of Chronic Neuroinflammation. Cerebellum, 2022, 21, 404-424.	2.5	6
2	The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia, 2022, 70, 1215-1250.	4.9	49
3	Histological and Top-Down Proteomic Analyses of the Visual Pathway in the Cuprizone Demyelination Model. Journal of Molecular Neuroscience, 2022, 72, 1374-1401.	2.3	5
4	Expression profiles of the genes associated with zinc homeostasis in normal and cancerous breast and prostate cells. Metallomics, 2022, 14, .	2.4	4
5	Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. International Journal of Molecular Sciences, 2021, 22, 7377.	4.1	13
6	Minocycline Treatment Reduces Mass and Force Output From Fast-Twitch Mouse Muscles and Inhibits Myosin Production in C2C12 Myotubes. Frontiers in Physiology, 2021, 12, 696039.	2.8	1
7	Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse?. Frontiers in Immunology, 2020, $11,572186$.	4.8	33
8	Behavioural and histological changes in cuprizone-fed mice. Brain, Behavior, and Immunity, 2020, 87, 508-523.	4.1	29
9	Modulation of Muscle Pain Is Not Somatotopically Restricted: An Experimental Model Using Concurrent Hypertonic-Normal Saline Infusions in Humans. Frontiers in Pain Research, 2020, 1, 601544.	2.0	1
10	CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 43.	3.7	22
11	Minocycline reduces experimental muscle hyperalgesia induced by repeated nerve growth factor injections in humans: A placeboâ€controlled doubleâ€blind drugâ€crossover study. European Journal of Pain, 2020, 24, 1138-1150.	2.8	8
12	Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neuroscience and Biobehavioral Reviews, 2019, 107, 23-46.	6.1	55
13	Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis. Cells, 2019, 8, 1314.	4.1	24
14	Variability of Oxaliplatin-Induced Neuropathic Pain Symptoms in Each Cycle and Its Implications on the Management of Colorectal Cancer Patients: A Retrospective Study in South Western Sydney Local Health District Hospitals, Sydney, Australia. Journal of Oncology, 2019, 2019, 1-11.	1.3	7
15	Tactile sensory channels over-ruled by frequency decoding system that utilizes spike pattern regardless of receptor type. ELife, 2019, 8, .	6.0	33
16	A flexible polyaniline-based bioelectronic patch. Biomaterials Science, 2018, 6, 493-500.	5.4	23
17	The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC Cancer, 2018, 18, 410.	2.6	77
18	Minocycline Prevents Muscular Pain Hypersensitivity and Cutaneous Allodynia Produced by Repeated Intramuscular Injections of Hypertonic Saline in Healthy Human Participants. Journal of Pain, 2017, 18, 994-1005.	1.4	12

#	Article	IF	Citations
19	Noxious, but not innocuous, thermal stimuli evoke pERK expression in dorsal horn neurons after spared nerve injury in adult rats. Neuroscience Letters, 2017, 654, 49-55.	2.1	3
20	Why does a cooled object feel heavier? Psychophysical investigations into the Weber's Phenomenon. BMC Neuroscience, 2017, 18, 4.	1.9	6
21	Electrophysiological characterization of human rectal afferents. American Journal of Physiology - Renal Physiology, 2016, 311, G1047-G1055.	3.4	13
22	Sensory perturbations using suture and sutureless repair of transected median nerve in rats. Somatosensory & Motor Research, 2016, 33, 20-28.	0.9	14
23	Differing roles for parvalbumin neurons after nerve injury. Neural Regeneration Research, 2016, 11, 1241.	3.0	2
24	Cav3.2-expressing low-threshold C fibres in human hairy skin contribute to cold allodynia—a non-TRPV1- and non-TRPM8-dependent phenomenon. Pain, 2015, 156, 1566-1575.	4.2	28
25	Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation. PLoS ONE, 2015, 10, e0138299.	2.5	24
26	Lysozyme depolymerization of photo-activated chitosan adhesive films. Carbohydrate Polymers, 2015, 121, 56-63.	10.2	30
27	The effects of preferential A- and C-fibre blocks and T-type calcium channel antagonist on detection of low-force monofilaments in healthy human participants. BMC Neuroscience, 2015, 16, 52.	1.9	18
28	Long term recovery of median nerve repair using laserâ€activated chitosan adhesive films. Journal of Biophotonics, 2015, 8, 196-207.	2.3	24
29	Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task. Journal of Neurophysiology, 2014, 112, 2382-2387.	1.8	6
30	Nerve repair: toward a sutureless approach. Neurosurgical Review, 2014, 37, 585-595.	2.4	53
31	Tissue repair strength using chitosan adhesives with different physicalâ€chemical characteristics. Journal of Biophotonics, 2014, 7, 948-955.	2.3	27
32	Differential sensitivity to surface compliance by tactile afferents in the human finger pad. Journal of Neurophysiology, 2014, 111, 1308-1317.	1.8	22
33	An investigation into the peripheral substrates involved in the tactile modulation of cutaneous pain with emphasis on the C-tactile fibres. Experimental Brain Research, 2013, 227, 457-465.	1.5	15
34	Mechanical allodynia in human glabrous skin mediated by low-threshold cutaneous mechanoreceptors with unmyelinated fibres. Experimental Brain Research, 2013, 231, 139-151.	1.5	28
35	C-tactile Fibers Contribute to Cutaneous Allodynia After Eccentric Exercise. Journal of Pain, 2013, 14, 538-548.	1.4	23
36	Laserâ€activated adhesive films for sutureless median nerve anastomosis. Journal of Biophotonics, 2013, 6, 938-949.	2.3	28

#	Article	IF	CITATIONS
37	Fabrication and Application of Rose Bengal-chitosan Films in Laser Tissue Repair. Journal of Visualized Experiments, 2012, , .	0.3	14
38	In vitro cell compatibility study of rose bengal–chitosan adhesives. Lasers in Surgery and Medicine, 2012, 44, 762-768.	2.1	21
39	Predicting the spatiotemporal expression of local and referred acute muscle pain in individual subjects. Experimental Brain Research, 2012, 223, 11-18.	1.5	3
40	Allodynia mediated by Câ€ŧactile afferents in human hairy skin. Journal of Physiology, 2011, 589, 4065-4075.	2.9	61
41	The cortical representation of sensory inputs arising from bone. Brain Research, 2009, 1269, 47-53.	2.2	11
42	Impairment of human proprioception by high-frequency cutaneous vibration. Journal of Physiology, 2007, 581, 971-980.	2.9	52
43	Vibrotactile Frequency Discrimination in Human Hairy Skin. Journal of Neurophysiology, 2006, 95, 1442-1450.	1.8	179
44	Absence of large-diameter sensory fibres in a nerve to the cat humerus. Journal of Anatomy, 2006, 208, 251-255.	1.5	33
45	An intact peripheral nerve preparation for monitoring the activity of single, periosteal afferent nerve fibres. Journal of Neuroscience Methods, 2006, 156, 140-144.	2.5	28
46	Tactile sensory function in the forearm of the monotremeTachyglossus aculeatus. Journal of Comparative Neurology, 2003, 459, 173-185.	1.6	6
47	NPY Y2 receptor agonist, N-acetyl [Leu28,Leu31]NPY24–36, reduces renal vasoconstrictor activity in anaesthetised dogs. Journal of the Autonomic Nervous System, 1999, 78, 10-17.	1.9	6
48	Inhibition of sympathetic cholinergic vasodilatation by a selective NPY Y2 receptor agonist in the gracilis muscle of anaesthetised dogs. Journal of the Autonomic Nervous System, 1998, 68, 14-20.	1.9	9
49	Inhibition of vagal vasodilatation by a selective neuropeptide Y Y2 receptor agonist in the bronchial circulation of anaesthetised dogs. Journal of the Autonomic Nervous System, 1998, 73, 80-85.	1.9	11
50	The effect of galanin and galanin fragments on blood pressure in the Cane toad, Bufo marinus. Regulatory Peptides, 1996, 67, 153-162.	1.9	1
51	Effect of three galanin antagonists on the pressor response to galanin in the Cane toad, Bufo marinus. Regulatory Peptides, 1996, 67, 163-168.	1.9	3