Fabio A Capitanio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8201525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mantle dynamics in the Mediterranean. Reviews of Geophysics, 2014, 52, 283-332.	9.0	394
2	Geological archive of the onset of plate tectonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170405.	1.6	227
3	India–Asia convergence driven by the subduction of the Greater Indian continent. Nature Geoscience, 2010, 3, 136-139.	5.4	183
4	Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature, 2011, 480, 83-86.	13.7	152
5	A regime diagram for subduction styles from 3-D numerical models of free subduction. Tectonophysics, 2010, 483, 29-45.	0.9	149
6	Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth and Planetary Science Letters, 2007, 262, 284-297.	1.8	148
7	Evidence of lower-mantle slab penetration phases in plate motions. Nature, 2008, 451, 981-984.	13.7	129
8	Upper plate controls on deep subduction, trench migrations and deformations at convergent margins. Tectonophysics, 2010, 483, 80-92.	0.9	126
9	Dynamics of plate bending at the trench and slabâ€plate coupling. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	106
10	Seismic anisotropy around subduction zones: Insights from threeâ€dimensional modeling of upper mantle deformation and SKS splitting calculations. Geochemistry, Geophysics, Geosystems, 2013, 14, 243-262.	1.0	102
11	The coupling of Indian subduction and Asian continental tectonics. Gondwana Research, 2014, 26, 608-626.	3.0	96
12	Development of mantle seismic anisotropy during subductionâ€induced 3â€Ð flow. Geophysical Research Letters, 2012, 39, .	1.5	82
13	The role of deep subduction in supercontinent breakup. Tectonophysics, 2018, 746, 312-324.	0.9	77
14	When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180103.	1.6	74
15	The role of viscoelasticity in subducting plates. Geochemistry, Geophysics, Geosystems, 2014, 15, 4291-4304.	1.0	57
16	Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence. Nature Communications, 2017, 8, 15992.	5.8	57
17	Mesozoic spreading kinematics: consequences for Cenozoic Central and Western Mediterranean subduction. Geophysical Journal International, 2006, 165, 804-816.	1.0	54
18	Subduction and slab breakoff controls on Asian indentation tectonics and Himalayan western syntaxis formation. Geochemistry, Geophysics, Geosystems, 2013, 14, 3515-3531.	1.0	54

ΓΑΒΙΟ Α CAPITANIO

#	Article	IF	CITATIONS
19	Overriding plate controls on subduction evolution. Journal of Geophysical Research: Solid Earth, 2014, 119, 6684-6704.	1.4	49
20	Peel-back controlled lithospheric convergence explains the secular transitions in Archean metamorphism and magmatism. Earth and Planetary Science Letters, 2020, 538, 116224.	1.8	49
21	The opening of Sirte basin: Result of slab avalanching?. Earth and Planetary Science Letters, 2009, 285, 210-216.	1.8	48
22	Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions. Physics of the Earth and Planetary Interiors, 2011, 184, 1-13.	0.7	42
23	Subduction zone interaction: Controls on arcuate belts. Geology, 2016, 44, 715-718.	2.0	41
24	Subduction induced mantle flow: Length-scales and orientation of the toroidal cell. Earth and Planetary Science Letters, 2017, 479, 284-297.	1.8	40
25	Lithosphere differentiation in the early Earth controls Archean tectonics. Earth and Planetary Science Letters, 2019, 525, 115755.	1.8	38
26	Thermochemical lithosphere differentiation and the origin of cratonic mantle. Nature, 2020, 588, 89-94.	13.7	37
27	Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophysics, 2018, 746, 339-351.	0.9	35
28	The bending mechanics in a dynamic subduction system: Constraints from numerical modelling and global compilation analysis. Tectonophysics, 2012, 522-523, 224-234.	0.9	34
29	Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochemistry, Geophysics, Geosystems, 2015, 16, 962-982.	1.0	33
30	Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone. Geophysical Research Letters, 2016, 43, 11,567.	1.5	30
31	The dynamics of extrusion tectonics: Insights from numerical modeling. Tectonics, 2014, 33, 2361-2381.	1.3	29
32	An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances, 2020, 6, .	4.7	27
33	Complex mantle flow around heterogeneous subducting oceanic plates. Earth and Planetary Science Letters, 2012, 353-354, 29-37.	1.8	26
34	On the Role of Lower Crust and Midlithosphere Discontinuity for Cratonic Lithosphere Delamination and Recycling. Geophysical Research Letters, 2018, 45, 7425-7433.	1.5	26
35	Contrasted East Asia and South America tectonics driven by deep mantle flow. Earth and Planetary Science Letters, 2019, 517, 106-116.	1.8	22
36	Modeling Slabâ€Slab Interactions: Dynamics of Outward Dipping Doubleâ€Sided Subduction Systems. Geochemistry, Geophysics, Geosystems, 2018, 19, 693-714.	1.0	18

ΓΑΒΙΟ Α CAPITANIO

#	Article	IF	CITATIONS
37	The role of pre-existing weak zones in the formation of the Himalaya and Tibetan plateau: 3-D thermomechanical modelling. Geophysical Journal International, 2020, 221, 1971-1983.	1.0	18
38	Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction. Tectonophysics, 2018, 723, 95-106.	0.9	17
39	Recent tectonics of Tripolitania, Libya: an intraplate record of Mediterranean subduction. Geological Society Special Publication, 2011, 357, 319-328.	0.8	15
40	Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Midâ€Lithosphere Discontinuity: A Hypothesis. Geophysical Research Letters, 2017, 44, 9253-9260.	1.5	15
41	Dynamic interactions between subduction zones. Global and Planetary Change, 2021, 202, 103501.	1.6	14
42	Make subductions diverse again. Earth-Science Reviews, 2022, 226, 103966.	4.0	14
43	3â€D Analog Modeling Constraints on Rifting in the Afar Region. Tectonics, 2020, 39, e2020TC006339.	1.3	13
44	Controls on subduction reorganization in the Hellenic margin, eastern Mediterranean. Geophysical Research Letters, 2010, 37, .	1.5	12
45	Current Deformation in the Tibetan Plateau: A Stress Gauge in the Indiaâ€Asia Collision Tectonics. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008649.	1.0	12
46	The role of the Miocene-to-Pliocene transition in the Eastern Mediterranean extrusion tectonics: Constraints from numerical modelling. Earth and Planetary Science Letters, 2016, 448, 122-132.	1.8	11
47	Numerical modeling of stress and topography coupling during subduction: Inferences on global vs. regional observables interpretation. Tectonophysics, 2018, 746, 239-250.	0.9	10
48	The effect of plate-scale rheology and plate interactions on intraplate seismicity. Earth and Planetary Science Letters, 2017, 478, 121-131.	1.8	9
49	The role of longâ€ŧerm rifting history on modes of continental lithosphere extension. Journal of Geophysical Research: Solid Earth, 2016, 121, 8917-8940.	1.4	8
50	Subduction geometry controls on dynamic topography: implications for the Jurassic Surat Basin. Australian Journal of Earth Sciences, 2019, 66, 367-377.	0.4	8
51	Lithospheric-age control on the migrations of oceanic convergent margins. Tectonophysics, 2013, 593, 193-200.	0.9	7
52	Self-consistent stick-slip recurrent behaviour of elastoplastic faults in intraplate environment: a Lagrangian solid mechanics approach. Geophysical Journal International, 2020, 221, 151-162.	1.0	6
53	Craton Formation in Early Earth Mantle Convection Regimes. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6
54	The emergence of seismic cycles from stress feedback between intra-plate faulting and far-field tectonic loading. Earth and Planetary Science Letters, 2016, 447, 112-118.	1.8	5

ΓΑΒΙΟ Α CAPITANIO

#	Article	IF	CITATIONS
55	Flexural Analysis Along the Sunda Trench: Bending, Buckling and Plate Coupling. Tectonics, 2018, 37, 3524-3544.	1.3	5
56	The Impact of a Very Weak and Thin Upper Asthenosphere on Subduction Motions. Geophysical Research Letters, 2019, 46, 11893-11905.	1.5	5
57	Numerical Modeling of Tectonic Processes. , 2021, , 903-912.		0
58	Timescales of successful and failed subduction: insights from numerical modelling. Geophysical Journal International, 2021, 225, 261-276.	1.0	0
59	Convergence Velocity Controls on the Structural Evolution of Orogens. Tectonics, 2021, 40, e2020TC006570.	1.3	0