Leo C James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8201136/publications.pdf

Version: 2024-02-01

		53794	5	6724
89	11,227	45		83
papers	citations	h-index		g-index
104	104	104		14340
104	104	104		17570
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599, 114-119.	27.8	1,041
2	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603, 706-714.	27.8	756
3	Antibody Multispecificity Mediated by Conformational Diversity. Science, 2003, 299, 1362-1367.	12.6	673
4	Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends in Biochemical Sciences, 2003, 28, 361-368.	7.5	514
5	Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19985-19990.	7.1	408
6	HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency. PLoS Pathogens, 2011, 7, e1002439.	4.7	403
7	HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature, 2013, 503, 402-405.	27.8	396
8	SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell, 2020, 27, 951-961.e5.	11.1	388
9	Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 2021, 35, 109292.	6.4	375
10	A Method for the Acute and Rapid Degradation of Endogenous Proteins. Cell, 2017, 171, 1692-1706.e18.	28.9	342
11	A Large-Scale Conformational Change Couples Membrane Recruitment to Cargo Binding in the AP2 Clathrin Adaptor Complex. Cell, 2010, 141, 1220-1229.	28.9	305
12	Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nature Immunology, 2013, 14, 327-336.	14.5	304
13	Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6200-6205.	7.1	300
14	Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathogens, 2021, 17, e1009246.	4.7	268
15	A thermostable, closed SARS-CoV-2 spike protein trimer. Nature Structural and Molecular Biology, 2020, 27, 934-941.	8.2	261
16	Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly. PLoS Pathogens, 2014, 10, e1004459.	4.7	238
17	Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens. Science, 2013, 340, 701-706.	12.6	231
18	HIV Integration Targeting: A Pathway Involving Transportin-3 and the Nuclear Pore Protein RanBP2. PLoS Pathogens, 2011, 7, e1001313.	4.7	191

#	Article	IF	CITATIONS
19	HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature, 2016, 536, 349-353.	27.8	190
20	TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6045-6050.	7.1	160
21	Intracellular sensing of complement C3 activates cell autonomous immunity. Science, 2014, 345, 1256070.	12.6	143
22	Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 574-579.	7.1	143
23	Crystal Structure of HEL4, a Soluble, Refoldable Human VH Single Domain with a Germ-line Scaffold. Journal of Molecular Biology, 2004, 337, 893-903.	4.2	134
24	IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis. ELife, 2018, 7, .	6.0	131
25	Activation of Human $\hat{I}^3\hat{I}^*$ T Cells by Cytosolic Interactions of BTN3A1 with Soluble Phosphoantigens and the Cytoskeletal Adaptor Periplakin. Journal of Immunology, 2015, 194, 2390-2398.	0.8	130
26	The specificity of cross-reactivity: Promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Science, 2009, 12, 2183-2193.	7.6	119
27	Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10014-10019.	7.1	112
28	Acute and rapid degradation of endogenous proteins by Trim-Away. Nature Protocols, 2018, 13, 2149-2175.	12.0	108
29	Acetylation regulates Cyclophilin A catalysis, immunosuppression and HIV isomerization. Nature Chemical Biology, 2010, 6, 331-337.	8.0	102
30	Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nature Structural and Molecular Biology, 2009, 16, 1036-1042.	8.2	96
31	AAA ATPase p97/VCP is essential for TRIM21-mediated virus neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19733-19738.	7.1	91
32	Structure and kinetics of a transient antibody binding intermediate reveal a kinetic discrimination mechanism in antigen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12730-12735.	7.1	87
33	Intracellular antibody receptor TRIM21 prevents fatal viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12397-12401.	7.1	86
34	TRIM21â€"From Intracellular Immunity to Therapy. Frontiers in Immunology, 2019, 10, 2049.	4.8	85
35	Trivalent RING Assembly on Retroviral Capsids Activates TRIM5ÂUbiquitination and Innate Immune Signaling. Cell Host and Microbe, 2018, 24, 761-775.e6.	11.0	82
36	TRIM21 Promotes cGAS and RIG-I Sensing of Viral Genomes during Infection by Antibody-Opsonized Virus. PLoS Pathogens, 2015, 11, e1005253.	4.7	81

#	Article	IF	CITATIONS
37	<scp>TRIM</scp> 21: a cytosolic Fc receptor with broad antibody isotype specificity. Immunological Reviews, 2015, 268, 328-339.	6.0	78
38	Translocalized IgA mediates neutralization and stimulates innate immunity inside infected cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13463-13468.	7.1	69
39	Cellular IP6 Levels Limit HIV Production while Viruses that Cannot Efficiently Package IP6 Are Attenuated for Infection and Replication. Cell Reports, 2019, 29, 3983-3996.e4.	6.4	65
40	Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation. Nature Communications, 2021, 12, 5333.	12.8	64
41	Combined Point-of-Care Nucleic Acid and Antibody Testing for SARS-CoV-2 following Emergence of D614G Spike Variant. Cell Reports Medicine, 2020, 1, 100099.	6.5	61
42	Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D. Journal of Virology, 2009, 83, 2044-2047.	3.4	57
43	IP6 Regulation of HIV Capsid Assembly, Stability, and Uncoating. Viruses, 2018, 10, 640.	3.3	57
44	Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21. ELife, 2018, 7, .	6.0	57
45	Complement C4 Prevents Viral Infection through Capsid Inactivation. Cell Host and Microbe, 2019, 25, 617-629.e7.	11.0	53
46	Intracellular antibodyâ€mediated immunity and the role of TRIM21. BioEssays, 2011, 33, 803-809.	2.5	51
47	HIV-1 Resistance to the Capsid-Targeting Inhibitor PF74 Results in Altered Dependence on Host Factors Required for Virus Nuclear Entry. Journal of Virology, 2015, 89, 9068-9079.	3.4	49
48	TRIM21 mediates antibody inhibition of adenovirus-based gene delivery and vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10440-10445.	7.1	49
49	$1.9~\tilde{A}$ structure of the therapeutic antibody CAMPATH-1H fab in complex with a synthetic peptide antigen. Journal of Molecular Biology, 1999, 289, 293-301.	4.2	47
50	Conformational Adaptation of Asian Macaque TRIMCyp Directs Lineage Specific Antiviral Activity. PLoS Pathogens, 2010, 6, e1001062.	4.7	46
51	Viral nucleoprotein antibodies activate TRIM21 and induce T cell immunity. EMBO Journal, 2021, 40, e106228.	7.8	46
52	Structural and Mechanistic Insights into the Regulation of the Fundamental Rho Regulator RhoGDIα by Lysine Acetylation. Journal of Biological Chemistry, 2016, 291, 5484-5499.	3.4	45
53	Intracellular neutralisation of rotavirus by VP6-specific IgG. PLoS Pathogens, 2020, 16, e1008732.	4.7	44
54	Target-induced clustering activates Trim-Away of pathogens and proteins. Nature Structural and Molecular Biology, 2021, 28, 278-289.	8.2	44

#	Article	IF	CITATIONS
55	A stable immature lattice packages IP ₆ for HIV capsid maturation. Science Advances, 2021, 7, .	10.3	44
56	TRIM21 Immune Signaling Is More Sensitive to Antibody Affinity Than Its Neutralization Activity. Journal of Immunology, 2016, 196, 3452-3459.	0.8	34
57	Antibody and DNA sensing pathways converge to activate the inflammasome during primary human macrophage infection. EMBO Journal, 2019, 38, e101365.	7.8	33
58	A tri-ionic anchor mechanism drives Ube2N-specific recruitment and K63-chain ubiquitination in TRIM ligases. Nature Communications, 2019, 10, 4502.	12.8	32
59	A lysine ring in HIV capsid pores coordinates IP6 to drive mature capsid assembly. PLoS Pathogens, 2021, 17, e1009164.	4.7	32
60	Coordinated Neutralization and Immune Activation by the Cytosolic Antibody Receptor TRIM21. Journal of Virology, 2016, 90, 4856-4859.	3.4	31
61	Antibody- and TRIM21-dependent intracellular restriction of <i>Salmonella enterica </i> . Pathogens and Disease, 2014, 72, n/a-n/a.	2.0	29
62	Analysis of Serological Biomarkers of SARS-CoV-2 Infection in Convalescent Samples From Severe, Moderate and Mild COVID-19 Cases. Frontiers in Immunology, 2021, 12, 748291.	4.8	29
63	Antibody-antigen kinetics constrain intracellular humoral immunity. Scientific Reports, 2016, 6, 37457.	3.3	27
64	Intracellular Antiviral Immunity. Advances in Virus Research, 2018, 100, 309-354.	2.1	27
65	Diverse HIV viruses are targeted by a conformationally dynamic antiviral. Nature Structural and Molecular Biology, 2012, 19, 411-416.	8.2	26
66	RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Nature Communications, 2021, 12, 1220.	12.8	26
67	Singleâ€dose immunisation with a multimerised SARSâ€CoVâ€2 receptor binding domain (RBD) induces an enhanced and protective response in mice. FEBS Letters, 2021, 595, 2323-2340.	2.8	24
68	Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathogens, 2017, 13, e1006758.	4.7	19
69	A functional assay for serum detection of antibodies against SARSâ€CoVâ€2 nucleoprotein. EMBO Journal, 2021, 40, e108588.	7.8	19
70	Cholesterol determines the cytosolic entry and seeded aggregation of tau. Cell Reports, 2022, 39, 110776.	6.4	19
71	Intracellular Antibody Immunity and the Cytosolic Fc Receptor TRIM21. Current Topics in Microbiology and Immunology, 2014, 382, 51-66.	1.1	18
72	The Human Immunodeficiency Virus Capsid Is More Than Just a Genome Package. Annual Review of Virology, 2018, 5, 209-225.	6.7	15

#	Article	IF	CITATIONS
73	Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue. Acta Neuropathologica Communications, 2021, 9, 41.	5.2	15
74	Potent TRIM21 and complement-dependent intracellular antiviral immunity requires the IgG3 hinge. Science Immunology, 2022, 7, eabj1640.	11.9	14
75	β-Edge Interactions in a Pentadecameric Human Antibody Vκ Domain. Journal of Molecular Biology, 2007, 367, 603-608.	4.2	13
76	Potent Lentiviral Restriction by a Synthetic Feline TRIM5 Cyclophilin A Fusion. Journal of Virology, 2010, 84, 8980-8985.	3.4	13
77	The molecular mechanisms that drive intracellular neutralization by the antibody-receptor and RING E3 ligase TRIM21. Seminars in Cell and Developmental Biology, 2022, 126, 99-107.	5.0	12
78	Rare missense variants in the human cytosolic antibody receptor preserve antiviral function. ELife, 2019, 8, .	6.0	9
79	The HIV-1 Capsid: More than Just a Delivery Package. Advances in Experimental Medicine and Biology, 2019, 1215, 69-83.	1.6	6
80	Critical Care Workers Have Lower Seroprevalence of SARS-CoV-2 IgG Compared with Non-patient Facing Staff in First Wave of COVID19. The Journal of Critical Care Medicine, 2021, 7, 199-210.	0.7	4
81	Intracellular antibody immunity and its applications. PLoS Pathogens, 2020, 16, e1008657.	4.7	2
82	Characterization of innate immune viral sensors in patients following allogeneic hematopoietic stem cell transplantation. Innate Immunity, 2018, 24, 112-121.	2.4	1
83	Building Complexity: Making and Breaking Synthetic Subunits of the HIV Capsid. Cell Host and Microbe, 2019, 26, 151-153.	11.0	0
84	Intracellular neutralisation of rotavirus by VP6-specific IgG. , 2020, 16, e1008732.		0
85	Intracellular neutralisation of rotavirus by VP6-specific IgG. , 2020, 16, e1008732.		0
86	Intracellular neutralisation of rotavirus by VP6-specific IgG. , 2020, 16, e1008732.		0
87	Intracellular neutralisation of rotavirus by VP6-specific IgG. , 2020, 16, e1008732.		0
88	Intracellular neutralisation of rotavirus by VP6-specific IgG. , 2020, 16, e1008732.		0
89	Intracellular neutralisation of rotavirus by VP6-specific IgG. , 2020, 16, e1008732.		0