## Jennifer A Scott

## List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8200702/publications.pdf
Version: 2024-02-01


A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear
systems of equations. ACM Transactions on Mathematical Software, 2007,33,10.

Algorithm 891. ACM Transactions on Mathematical Software, 2009, 36, 1-12.
1.6

The Factorization of Sparse Symmetric Indefinite Matrices. IMA Journal of Numerical Analysis, 1991, 11, 181-204.

Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques. SIAM Journal of Scientific Computing, 1998, 19, 605-625.

A Note on Performance Profiles for Benchmarking Software. ACM Transactions on Mathematical
Software, 2017, 43, 1-5.

HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D. International Journal for $\bar{N}$ umerical Methods in Engineering, 2010, 82, 64-98.

Maximising umami taste in meat using natural ingredients: effects on chemistry, sensory perception
7 and hedonic liking in young and old consumers. Journal of the Science of Food and Agriculture, 2013,
93, 3312-3321.

Design of a Multicore Sparse Cholesky Factorization Using DAGs. SIAM Journal of Scientific
Computing, 2010, 32, 3627-3649.

Levelâ€set topology optimization with many linear buckling constraints using an efficient and robust
eigensolver. International Journal for Numerical Methods in Engineering, 2016, 107, 1029-1053.

A Sparse Symmetric Indefinite Direct Solver for GPU Architectures. ACM Transactions on
Mathematical Software, 2016, 42, 1-25.

The use of profile reduction algorithms with a frontal code. International Journal for Numerical
11 Methods in Engineering, 1989, 28, 2555-2568.

An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices. ACM Transactions on Mathematical Software, 1995, 21, 432-475.

On the order of the error in discretization methods for weakly singular second kind non-smooth solutions. BIT Numerical Mathematics, 1985, 25, 623-634.

A Multilevel Algorithm for Wavefront Reduction. SIAM Journal of Scientific Computing, 2001, 23, 1352-1375.

A nonlinear weakly singular Volterra integro-differential equation arising from a reaction-diffusion study in a small cell. Journal of Computational and Applied Mathematics, 1987, 18, 289-305.

An out-of-core sparse Cholesky solver. ACM Transactions on Mathematical Software, 2009, 36, 1-33.
1.6
2.7
preconditioning. Journal of Parallel and Distributed Computing, 2018, 119, 219-230.

A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations. ACM Transactions on Mathematical Software, 2004, 30, 300-325.

Reducing the Total Bandwidth of a Sparse Unsymmetric Matrix. SIAM Journal on Matrix Analysis and
Applications, 2006, 28, 805-821.

A mathematical model of a biosensor. Journal of Engineering Mathematics, 1996, 30, 321-337.
0.6
1.2

On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization. SIAM Journal of Scientific Computing, 2014, 36, A609-A633.

HSL_MI28. ACM Transactions on Mathematical Software, 2014, 40, 1-19.

The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems. ACM Transactions on Mathematical Software, 2017, 43, 1-35.

A parallel frontal solver for finite element applications. International Journal for Numerical
Methods in Engineering, 2001, 50, 1131-1144.

A fast method for binary programming using firstâ€order derivatives, with application to topology
optimization with buckling constraints. International Journal for Numerical Methods in Engineering 2012, 92, 1026-1043.

27 Pivoting strategies for tough sparse indefinite systems. ACM Transactions on Mathematical Software,
2013, 40, 1-19.

Stabilized bordered block diagonal forms for parallel sparse solvers. Parallel Computing, 2005, 31, 275-289.

> On Signed Incomplete Cholesky Factorization Preconditioners for Saddle-Point Systems. SIAM Journal
> of Scientific Computing, 2014, 36, A2984-A3010.
1.3

18

30 On ordering elements for a frontal solver. Communications in Numerical Methods in Engineering, 1999, 15, 309-324.

Parallel frontal solvers for large sparse linear systems. ACM Transactions on Mathematical
Software, 2003, 29, 395-417.

A frontal code for the solution of sparse positive-definite symmetric systems arising from
finite-element applications. ACM Transactions on Mathematical Software, 1999, 25, 404-424.
1.6

A parallel direct solver for large sparse highly unsymmetric linear systems. ACM Transactions on
1.6

Mathematical Software, 2004, 30, 95-117.

Chebyshev acceleration of iterative refinement. Numerical Algorithms, 2014, 66, 591-608.
1.1
1.6

Strengths and Limitations of Stretching for Least-squares Problems with Some Dense Rows. ACM
Transactions on Mathematical Software, 2021, 47, 1-25.
14
Sparse Stretching for Solving Sparse-Dense Linear Least-Squares Problems. SIAM Journal of Scientific
41 Computing, 2019, 41, A1604-A1625.
43 The importance of structure in incomplete factorization preconditioners. BIT Numerical Mathematics,

$2011,51,385-404$. Partial factorization of a dense symmetric indefinite matrix. ACM Transactions on Mathematical | Software, 2011, 38, 1-19. |
| :--- |
| $45 \quad$On the use of suboptimal matchings for scaling and ordering sparse symmetric matrices. Numerical <br> Linear Algebra With Applications, $2015,22,648-663$. |
| $46 \quad$A Schur complement approach to preconditioning sparse linear least-squares problems with some <br> dense rows. Numerical Algorithms, 2018, $79,1147-1168$. |

47 Repeated Integral Inequalities. IMA Journal of Numerical Analysis, 1984, 4, 99-107.

1.5

8

48 A Unified Approach to Convergence Analysis of Discretization Methods for Volterra-typeEquations. IMA Journal of Numerical Analysis, 1985, 5, 41-57.
1.5

8
40 The design of a portable parallel frontal solver for chemical process engineering problems.
Computers and Chemical Engineering, 2001, 25, 1699-1709.

Experiences of sparse direct symmetric solvers. ACM Transactions on Mathematical Software, 2007, 33,
$50 \quad 18$.
1.6

8

An efficient outâ€ofâ€core multifrontal solver for largeâ€scale unsymmetric element problems.
An efficient outa€ofa€core multifrontal solver for largeáscale unsymmetric elem
International Journal for Numerical Methods in Engineering, 2009, 77, 901-921.
1.5

8

Scaling and pivoting in an out-of-core sparse direct solver. ACM Transactions on Mathematical
Software, 2010, 37, 1-23.
1.6

8

Performance issues for frontal schemes on a cache-based high-performance computer. International
Journal for Numerical Methods in Engineering, 1998, 42, 127-143.
1.5

7

55 | Optimal Weighted Matchings for Rank-Deficient Sparse Matrices. SIAM Journal on Matrix Analysis and |
| :--- |
| Applications, 2013, 34, 1431-1447. |

Row ordering for frontal solvers in chemical process engineering. Computers and Chemical
Engineering, 2000, 24, 1865-1880.

60 A frontal solver for the 21st century. Communications in Numerical Methods in Engineering, 2006, 22,
1.3

1015-1029.

A Robust Algebraic Domain Decomposition Preconditioner for Sparse Normal Equations. SIAM Journal
of Scientific Computing, 2022, 44, A1047-A1068.
1.3

A note on fast approximate minimum degree orderings for symmetric matrices with some dense rows.
Numerical Linear Algebra With Applications, 2010, 17, 43-55.
0.9

4

```
63 An efficient analyse phase for element problems. Numerical Linear Algebra With Applications, 2013, 20,
\(397-412\).
```

On Using Cholesky-Based Factorizations and Regularization for Solving Rank-Deficient Sparse Linear
Least-Squares Problems. SIAM Journal of Scientific Computing, 2017, 39, C319-C339.

| 65 | A Max-Plus Approach to Incomplete Cholesky Factorization Preconditioners. SIAM Journal of Scientific Computing, 2018, 40, A1987-A2004. | 1.3 | 4 |
| :---: | :---: | :---: | :---: |
| 66 | Two-Level NystrÃ $\mathrm{Tm}_{\mathrm{m}}-$-Schur Preconditioner for Sparse Symmetric Positive Definite Matrices. SIAM Journal of Scientific Computing, 2021, 43, A3837-A3861. | 1.3 | 4 |
| 67 | A null-space approach for large-scale symmetric saddle point systems with a small and non zero $(2,2)$ block. Numerical Algorithms, 2022, 90, 1639-1667. | 1.1 | 4 |

On the Exact Order of Convergence of Discrete Methods for Volterra-type Equations. IMA Journal of
Numerical Analysis, 1988, 8, 511-515.

$$
\begin{aligned}
& \text { Improving the stability and robustness of incomplete symmetric indefinite factorization } \\
& \text { preconditioners. Numerical Linear Algebra With Applications, 2017, 24, e2099. } \\
& 70 \quad \begin{array}{l}
\text { A Computational Study of Using Black-box QR Solvers for Large-scale Sparse-dense Linear Least } \\
\text { Squares Problems. ACM Transactions on Mathematical Software, 2022, 48, 1-24. }
\end{array}
\end{aligned}
$$

0.93
1.6

3

Algebra With Applications, 2014, 21, 51-67.

