
Claus C Hilgetag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8200595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 2004, 8, 418-425.	4.0	1,864
2	The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 2017, 8, 1349.	5.8	956
3	Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 2007, 34, 905-923.	2.1	752
4	Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems. PLoS Computational Biology, 2006, 2, e95.	1.5	568
5	Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex. Nature Neuroscience, 2001, 4, 953-957.	7.1	528
6	Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 91-110.	1.8	490
7	ON ELEMENTARY FLUX MODES IN BIOCHEMICAL REACTION SYSTEMS AT STEADY STATE. Journal of Biological Systems, 1994, 02, 165-182.	0.5	449
8	Hierarchical Organization Unveiled by Functional Connectivity in Complex Brain Networks. Physical Review Letters, 2006, 97, 238103.	2.9	426
9	Intrinsic Coupling Modes: Multiscale Interactions in Ongoing Brain Activity. Neuron, 2013, 80, 867-886.	3.8	418
10	The Connectional Organization of the Cortico-thalamic System of the Cat. Cerebral Cortex, 1999, 9, 277-299.	1.6	332
11	Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex. PLoS Computational Biology, 2006, 2, e22.	1.5	271
12	A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale. PLoS Computational Biology, 2009, 5, e1000334.	1.5	242
13	Computational analysis of functional connectivity between areas of primate cerebral cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 111-126.	1.8	234
14	Clustered Organization of Cortical Connectivity. Neuroinformatics, 2004, 2, 353-360.	1.5	229
15	Quantitative Architecture Distinguishes Prefrontal Cortical Systems in the Rhesus Monkey. Cerebral Cortex, 2001, 11, 975-988.	1.6	225
16	Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism. Journal of Mathematical Biology, 2002, 45, 153-181.	0.8	204
17	Influence of Stroke Infarct Location on Functional Outcome Measured by the Modified Rankin Scale. Stroke, 2014, 45, 1695-1702.	1.0	193
18	Developmental mechanics of the primate cerebral cortex. Anatomy and Embryology, 2005, 210, 411-417.	1.5	174

#	Article	IF	CITATIONS
19	ENHANCED PERSPECTIVE: Indeterminate Organization of the Visual System. Science, 1996, 271, 776-776.	6.0	172
20	Spatial growth of real-world networks. Physical Review E, 2004, 69, 036103.	0.8	168
21	Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 71-89.	1.8	147
22	Structure–function relationship in complex brain networks expressed by hierarchical synchronization. New Journal of Physics, 2007, 9, 178-178.	1.2	145
23	Organization of Excitable Dynamics in Hierarchical Biological Networks. PLoS Computational Biology, 2008, 4, e1000190.	1.5	124
24	Modelling the development of cortical systems networks. Neurocomputing, 2004, 58-60, 297-302.	3.5	122
25	Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex. Journal of Neuroscience, 2015, 35, 13943-13948.	1.7	121
26	â€~Hierarchy' in the organization of brain networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190319.	1.8	115
27	Cortical Gradients and Laminar Projections in Mammals. Trends in Neurosciences, 2018, 41, 775-788.	4.2	114
28	Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New Journal of Physics, 2007, 9, 110-110.	1.2	112
29	Hierarchy and dynamics of neural networks. Frontiers in Neuroinformatics, 2010, 4, .	1.3	111
30	Gyrification and neural connectivity in schizophrenia. Development and Psychopathology, 2011, 23, 339-352.	1.4	107
31	The primate connectome in context: Principles of connections of the cortical visual system. NeuroImage, 2016, 134, 685-702.	2.1	102
32	A Predictive Structural Model of the Primate Connectome. Scientific Reports, 2017, 7, 43176.	1.6	100
33	Is the brain really a small-world network?. Brain Structure and Function, 2016, 221, 2361-2366.	1.2	98
34	A Simple Rule for Axon Outgrowth and Synaptic Competition Generates Realistic Connection Lengths and Filling Fractions. Cerebral Cortex, 2009, 19, 3001-3010.	1.6	94
35	A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Structure and Function, 2015, 220, 3167-3184.	1.2	94
36	Fair Attribution of Functional Contribution in Artificial and Biological Networks. Neural Computation, 2004, 16, 1887-1915.	1.3	93

#	Article	IF	CITATIONS
37	Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems. PLoS Computational Biology, 2013, 9, e1002937.	1.5	91
38	Edge vulnerability in neural and metabolic networks. Biological Cybernetics, 2004, 90, 311-7.	0.6	90
39	Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path. PLoS Computational Biology, 2016, 12, e1005025.	1.5	90
40	Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Frontiers in Neuroinformatics, 2010, 4, 8.	1.3	86
41	On imputing function to structure from the behavioural effects of brain lesions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 147-161.	1.8	85
42	Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neuroscience, 2005, 6, 32.	0.8	84
43	Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. Frontiers in Computational Neuroscience, 2011, 5, 30.	1.2	82
44	Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Structure and Function, 2017, 222, 1281-1295.	1.2	81
45	Multi-scale account of the network structure of macaque visual cortex. Brain Structure and Function, 2018, 223, 1409-1435.	1.2	80
46	Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philosophical Transactions of the Royal Society B: Biological Sciences, 1995, 348, 281-308.	1.8	77
47	Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neurolmage, 2010, 51, 1006-1017.	2.1	73
48	Are there tenÂtimes more glia than neurons in the brain?. Brain Structure and Function, 2009, 213, 365-366.	1.2	71
49	Mapping the Connectome: Multi-Level Analysis of Brain Connectivity. Frontiers in Neuroinformatics, 2012, 6, 14.	1.3	67
50	Towards a ââ,¬Å"canonicalââ,¬Â•agranular cortical microcircuit. Frontiers in Neuroanatomy, 2014, 8, 165.	0.9	66
51	The natural axis of transmitter receptor distribution in the human cerebral cortex. Proceedings of the United States of America, 2021, 118, .	3.3	66
52	Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology, 2007, 1, 16.	3.0	65
53	Functional circuitry underlying visual neglect. Brain, 2006, 129, 1803-1821.	3.7	64
54	A blueprint of mammalian cortical connectomes. PLoS Biology, 2019, 17, e2005346.	2.6	64

#	Article	IF	CITATIONS
55	Chapter 8 Inter-hemispheric competition of sub-cortical structures is a crucial mechanism in paradoxical lesion effects and spatial neglect. Progress in Brain Research, 1999, 121, 121-141.	0.9	49
56	Spatiotemporal ontogeny of brain wiring. Science Advances, 2019, 5, eaav9694.	4.7	47
57	A Connectomic Hypothesis for the Hominization of the Brain. Cerebral Cortex, 2021, 31, 2425-2449.	1.6	47
58	Axiomatic Scalable Neurocontroller Analysis via the Shapley Value. Artificial Life, 2006, 12, 333-352.	1.0	46
59	Development of multi-cluster cortical networks by time windows for spatial growth. Neurocomputing, 2007, 70, 1829-1832.	3.5	46
60	Restoration of visual orienting into a cortically blind hemifield by reversible deactivation of posterior parietal cortex or the superior colliculus. Experimental Brain Research, 2002, 142, 463-474.	0.7	45
61	An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Network Neuroscience, 2019, 3, 905-923.	1.4	45
62	Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. NeuroImage, 2019, 189, 777-792.	2.1	44
63	Uniformity, specificity and variability of corticocortical connectivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 7-20.	1.8	43
64	Hierarchical modular brain connectivity is a stretch for criticality. Trends in Cognitive Sciences, 2014, 18, 114-115.	4.0	43
65	Brain simulation as a cloud service: The Virtual Brain on EBRAINS. NeuroImage, 2022, 251, 118973.	2.1	42
66	Perspective: network-guided pattern formation of neural dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130522.	1.8	41
67	A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks. Scientific Reports, 2015, 5, 7870.	1.6	41
68	Persistency and flexibility of complex brain networks underlie dualâ€ŧask interference. Human Brain Mapping, 2015, 36, 3542-3562.	1.9	41
69	Simultaneity of responses in a hierarchical visual network. NeuroReport, 2001, 12, 2753-2759.	0.6	39
70	Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex. European Journal of Neuroscience, 2005, 22, 681-696.	1.2	39
71	Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency. PLoS Computational Biology, 2017, 13, e1005776.	1.5	39
72	Multiclass Support Vector Machine-Based Lesion Mapping Predicts Functional Outcome in Ischemic Stroke Patients. PLoS ONE, 2015, 10, e0129569.	1.1	39

#	Article	IF	CITATIONS
73	The architecture of mammalian cortical connectomes in light of the theory of the dual origin of the cerebral cortex. Cortex, 2019, 118, 244-261.	1.1	38
74	Comparison between diffusion MRI tractography and histological tract-tracing of cortico-cortical structural connectivity in the ferret brain. Network Neuroscience, 2019, 3, 1038-1050.	1.4	36
75	Building Blocks of Self-Sustained Activity in a Simple Deterministic Model of Excitable Neural Networks. Frontiers in Computational Neuroscience, 2012, 6, 50.	1.2	32
76	Game theoretical mapping of causal interactions underlying visuoâ€ s patial attention in the human brain based on stroke lesions. Human Brain Mapping, 2017, 38, 3454-3471.	1.9	32
77	What Information about the Conserved-Moiety Structure of Chemical Reaction Systems Can be Derived from Their Stoichiometry?. The Journal of Physical Chemistry, 1995, 99, 8017-8023.	2.9	31
78	Attention and control of manual responses in cognitive conflict: Findings from TMS perturbation studies. Neuropsychologia, 2015, 74, 7-20.	0.7	31
79	Structural Properties of Synaptic Transmission and Temporal Dynamics at Excitatory Layer 5B Synapses in the Adult Rat Somatosensory Cortex. Frontiers in Synaptic Neuroscience, 2018, 10, 24.	1.3	31
80	Revisiting â€~brain modes' in a new computational era: approaches for the characterization of brain-behavioural associations. Brain, 2020, 143, 1088-1098.	3.7	30
81	Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke. NeuroImage: Clinical, 2015, 9, 83-94.	1.4	29
82	Beyond the average: Detecting global singular nodes from local features in complex networks. Europhysics Letters, 2009, 87, 18008.	0.7	28
83	Characterization of Visual Percepts Evoked by Noninvasive Stimulation of the Human Posterior Parietal Cortex. PLoS ONE, 2011, 6, e27204.	1.1	28
84	Occipitoparietal alpha-band responses to the graded allocation of top-down spatial attention. Journal of Neurophysiology, 2014, 112, 1307-1316.	0.9	27
85	Cortico-cortical communication dynamics. Frontiers in Systems Neuroscience, 2014, 8, 19.	1.2	25
86	Toward a theory of coactivation patterns in excitable neural networks. PLoS Computational Biology, 2018, 14, e1006084.	1.5	25
87	Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks. Neural Networks, 2021, 142, 608-618.	3.3	25
88	Computational Methods for the Analysis of Brain Connectivity. , 0, , 295-336.		25
89	Connectional characteristics of areas in Walker's map of primate prefrontal cortex. Neurocomputing, 2001, 38-40, 741-746.	3.5	23
90	Reduced rich-club connectivity is related to disability in primary progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e375.	3.1	23

#	Article	IF	CITATIONS
91	Perturbation-driven paradoxical facilitation of visuo-spatial function: Revisiting the â€~Sprague effect'. Cortex, 2020, 122, 10-39.	1.1	23
92	Stochastic resonance in discrete excitable dynamics on graphs. Chaos, Solitons and Fractals, 2012, 45, 611-618.	2.5	22
93	Causal localization of neural function: the Shapley value method. Neurocomputing, 2004, 58-60, 215-222.	3.5	21
94	Perturbation of visuospatial attention by high-frequency offline rTMS. Experimental Brain Research, 2008, 189, 121-128.	0.7	21
95	Altered topology of large-scale structural brain networks in chronic stroke. Brain Communications, 2019, 1, fcz020.	1.5	21
96	Comprehensive computational modelling of the development of mammalian cortical connectivity underlying an architectonic type principle. PLoS Computational Biology, 2018, 14, e1006550.	1.5	20
97	Spatial neglect and paradoxical lesion effects in the cat — A model based on midbrain connectivity. Neurocomputing, 2000, 32-33, 793-799.	3.5	17
98	A natural cortical axis connecting the outside and inside of the human brain. Network Neuroscience, 2022, 6, 950-959.	1.4	17
99	Information processing: A solution to the binding problem?. Current Biology, 1996, 6, 1092-1095.	1.8	16
100	Neural correlates of visuospatial bias in patients with left hemisphere stroke: a causal functional contribution analysis based on game theory. Neuropsychologia, 2018, 115, 142-153.	0.7	16
101	Brain anomaly networks uncover heterogeneous functional reorganization patterns after stroke. NeuroImage: Clinical, 2018, 20, 523-530.	1.4	16
102	Topological reinforcement as a principle of modularity emergence in brain networks. Network Neuroscience, 2019, 3, 589-605.	1.4	16
103	Role of long cycles in excitable dynamics on graphs. Physical Review E, 2014, 90, 052805.	0.8	15
104	Game theoretical mapping of white matter contributions to visuospatial attention in stroke patients with hemineglect. Human Brain Mapping, 2020, 41, 2926-2950.	1.9	15
105	Sculpting the Brain. Scientific American, 2009, 300, 66-71.	1.0	13
106	Contributions of human parietal and frontal cortices to attentional control during conflict resolution: a 1-Hz offline rTMS study. Experimental Brain Research, 2010, 205, 131-138.	0.7	13
107	Building the Ferretome. Frontiers in Neuroinformatics, 2016, 10, 16.	1.3	13
108	Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis. Brain Structure and Function, 2016, 221, 2553-2568.	1.2	13

#	Article	IF	CITATIONS
109	Modular topology emerges from plasticity in a minimalistic excitable network model. Chaos, 2017, 27, 047406.	1.0	13
110	Intrinsic Functional Connectivity Resembles Cortical Architecture at Various Levels of Isoflurane Anesthesia. Cerebral Cortex, 2018, 28, 2991-3003.	1.6	13
111	Fair Localization of Function Via Multi-Lesion Analysis. Neuroinformatics, 2004, 2, 163-168.	1.5	12
112	Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs. Scientific Reports, 2017, 7, 42340.	1.6	12
113	Cortical and thalamic connectivity of occipital visual cortical areas 17, 18, 19, and 21 of the domestic ferret (<scp><i>Mustela putorius furo</i></scp>). Journal of Comparative Neurology, 2019, 527, 1293-1314.	0.9	10
114	Discrimination of the hierarchical structure of cortical layers in 2-photon microscopy data by combined unsupervised and supervised machine learning. Scientific Reports, 2019, 9, 7424.	1.6	9
115	Cluster Structure of Cortical Systems in Mammalian Brains. , 1998, , 41-46.		9
116	Neural mechanisms of spatial attention in the cat. Neurocomputing, 2001, 38-40, 1281-1287.	3.5	8
117	Bilateral competitive processing of visual spatial attention in the human brain. Neurocomputing, 2003, 52-54, 793-798.	3.5	8
118	Cortical and thalamic connectivity of posterior parietal visual cortical areas PPc and PPr of the domestic ferret (<scp><i>Mustela putorius furo</i></scp>). Journal of Comparative Neurology, 2019, 527, 1315-1332.	0.9	8
119	The Effect of 10 Hz Repetitive Transcranial Magnetic Stimulation of Posterior Parietal Cortex on Visual Attention. PLoS ONE, 2015, 10, e0126802.	1.1	7
120	Technical considerations of a game-theoretical approach for lesion symptom mapping. BMC Neuroscience, 2016, 17, 40.	0.8	7
121	Selective perturbation of cognitive conflict in the human brain–A combined fMRI and rTMS study. Scientific Reports, 2016, 6, 38700.	1.6	7
122	Cortical and thalamic connectivity of temporal visual cortical areas 20a and 20b of the domestic ferret (<i>Mustela putorius furo</i>). Journal of Comparative Neurology, 2019, 527, 1333-1347.	0.9	7
123	Individual differences in local functional brain connectivity affect TMS effects on behavior. Scientific Reports, 2020, 10, 10422.	1.6	7
124	Models of paradoxical lesion effects and rules of inference for imputing function to structure in the brain. Neurocomputing, 1999, 26-27, 933-938.	3.5	6
125	Tracing evolution of spatio-temporal dynamics of the cerebral cortex: cortico-cortical communication dynamics. Frontiers in Systems Neuroscience, 2014, 8, 76.	1.2	6
126	The portable UNIX programming system (PUPS) and CANTOR: a computational environment for dynamical representation and analysis of complex neurobiological data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1259-1276.	1.8	5

#	Article	IF	CITATIONS
127	Game-theoretical mapping of fundamental brain functions based on lesion deficits in acute stroke. Brain Communications, 2021, 3, fcab204.	1.5	5
128	Reply: Inhibition between human brain areas or methodological artefact?. Brain, 2020, 143, e39-e39.	3.7	5
129	Systematic perturbation of an artificial neural network: A step towards quantifying causal contributions in the brain. PLoS Computational Biology, 2022, 18, e1010250.	1.5	5
130	Uniformity and specificity of long-range corticocortical connections in the visual cortex of the cat. Neurocomputing, 2001, 38-40, 667-673.	3.5	4
131	Classes and gradients of prefrontal cortical organization in the primate. Neurocomputing, 2002, 44-46, 823-829.	3.5	4
132	Influence of Stimulus Type on Effects of Flanker, Flanker Position, and Trial Sequence in a Saccadic Eye Movement Task. Quarterly Journal of Experimental Psychology, 2013, 66, 2253-2267.	0.6	4
133	Should I Stay or Should I Go – Cognitive Conflict in Multi-Attribute Signals Probed with East and West German â€~Ampelmänchen' Traffic Signs. PLoS ONE, 2013, 8, e64712.	1.1	4
134	Connectivity and cortical architecture. E-Neuroforum, 2016, 7, 56-63.	0.2	4
135	Female vs. Male AmpelmĤnchen-Gender-Specific Reaction Times to Male and Female Traffic Light Figures. Frontiers in Psychology, 2017, 8, 690.	1.1	4
136	Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Computational Biology, 2020, 16, e1007991.	1.5	4
137	Hierarchical organization and neuronal response latencies in the primate visual system. Neurocomputing, 2001, 38-40, 1519-1523.	3.5	3
138	Principles of brain connectivity organization. Behavioral and Brain Sciences, 2006, 29, 18-19.	0.4	3
139	Automated Volumes-of-Interest Identification for Classical and Atypical Parkinsonian Syndrome Differentiation Using T2' MR Imaging. Methods of Information in Medicine, 2013, 52, 128-136.	0.7	3
140	Multimodal Memory Components and Their Long-Term Dynamics Identified in Cortical Layers II/III but Not Layer V. Frontiers in Integrative Neuroscience, 2019, 13, 54.	1.0	3
141	Unifying the essential concepts of biological networks: biological insights and philosophical foundations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190314.	1.8	3
142	Optimization Analysis of Complex Neuroanatomical Data. , 1997, , 925-930.		3
143	Organization and Function of Complex Cortical Networks. , 2007, , 107-133.		3
144	The highways and byways of the brain. PLoS Biology, 2022, 20, e3001612.	2.6	3

#	Article	IF	CITATIONS
145	Topographic restoration of visual spatial attention in the cortically blind cat. Neurocomputing, 2002, 44-46, 831-835.	3.5	2
146	Brain network science needs to become predictive. Physics of Life Reviews, 2014, 11, 446-447.	1.5	2
147	Computational connectomics. E-Neuroforum, 2016, 7, 43-44.	0.2	2
148	Non-Optimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems. PLoS Computational Biology, 2005, preprint, e95.	1.5	2
149	Random axon outgrowth and synaptic competition generate realistic connection lengths and filling fractions. BMC Neuroscience, 2009, 10, .	0.8	1
150	An architectonic type principle in the development of laminar patterns of cortico-cortical connections. Brain Structure and Function, 2021, 226, 979-987.	1.2	1
151	The PUPS-MOSIX Environment: A Homeostatic Environment for Neuro- and Bio-informatic Applications. , 2003, , 187-202.		1
152	Wiring Principles, Optimization. , 2014, , 1-7.		1
153	Use of convex analysis for the modelling of biochemical reaction systems. Lecture Notes in Control and Information Sciences, 1994, , 365-374.	0.6	Ο
154	Title is missing!. Journal of the Neurological Sciences, 2009, 276, 204-205.	0.3	0
155	Title is missing!. Journal of the Neurological Sciences, 2009, 276, 205.	0.3	0
156	Title is missing!. Journal of the Neurological Sciences, 2011, 300, 204.	0.3	0
157	Konnektivitäund kortikale Architektur. E-Neuroforum, 2016, 22, 83-90.	0.2	Ο
158	Connectivity and cortical architecture. E-Neuroforum, 2016, 22, .	0.2	0
159	Wiring Principles, Optimization. , 2013, , 1-7.		Ο
160	Modular Organization Enables Both Self-Organized Criticality and Oscillations in Neural Systems. , 2013, , 207-212.		0
161	Connectivity Analysis in Normal and Pathological Brains. , 2014, , 1-5.		Ο
162	Connectivity Analysis in Normal and Pathological Brains. , 2015, , 790-793.		0

#	Article	IF	CITATIONS
163	Wiring Principles, Optimization. , 2015, , 3172-3177.		0
164	The causal role of temporoparietal junction in computing social influence in human decision-making. , 2019, , .		0
165	Structure–Function Relationship in Complex Brain Networks by Multilevel Modeling. , 2008, , 511-514.		0
166	Aufmerksamkeit. , 2007, , 459-467.		0
167	Single Image-Based Vignetting Correction for Improving the Consistency of Neural Activity Analysis in 2-Photon Functional Microscopy. Frontiers in Neuroinformatics, 2021, 15, 674439.	1.3	0
168	Wiring Principles, Optimization. , 2022, , 3656-3661.		0
169	Connectivity Analysis in Normal and Pathological Brains. , 2022, , 959-963.		0